


TypeScript for Beginners



http://taylorandfrancis.com


TypeScript for Beginners

The Ultimate Guide

Sufyan bin Uzayr



First edition published 2022
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2022 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the author and 
publisher cannot assume responsibility for the validity of all materials or the consequences of their use. 
The authors and publishers have attempted to trace the copyright holders of all material reproduced in 
this publication and apologize to copyright holders if permission to publish in this form has not been 
obtained. If any copyright material has not been acknowledged please write and let us know so we may 
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information 
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com 
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 
978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.
co.uk

Trademark Notice: Product or corporate names may be trademarks or registered trademarks and are 
used only for identification and explanation without intent to infringe.

ISBN: 9781032067582 (hbk)
ISBN: 9781032067575 (pbk)
ISBN: 9781003203728 (ebk)

DOI: 10.1201/9781003203728

Typeset in Minion Pro 
by KnowledgeWorks Global Ltd.

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003203728


v

Contents

Acknowledgments, xiii
About the Author, xv

Chapter 1    ◾   � TypeScript: Introduction to TypeScript	 1
WHAT IS TS?	 1

A BRIEF HISTORY OF TS	 1

WHY SHOULD YOU CHOOSE TS?	 2

How Does TS Help Developers Code Easier?	 3
How Exactly Does TS Improve JS?	 3

TS AS COMPARED TO JS	 5

What Is JS?	 5
TS Strengths	 5
Syntactic Sugar	 6

TS STRUCTURE	 7

Basic TS Types	 8
Boolean	 9
Number	 9
String	 9
Array	 10
Tuple	 10
Tuples Deconstruction	 11
Optional Tuple Elements	 12
Enum	 13



vi    ◾    Contents

String Enums	 15
Any	 15
Void	 16
Null and Undefined	 17
Never	 17
Symbol	 18

Type Assertions	 18
The Let Keyword	 19

TS Compiler	 19
Variable Declarations	 20

var Declarations	 20
Scoping	 21
Block Viewport	 22
Re-declaring and Escaping	 23
Closure of Variables with Block Scope Viewability	 25

Constant Declarations	 26
Let or Const?	 27

Destructuring	 27
Destructuring an Object	 28

Renaming Properties	 28
Default Values	 28
Declaring Functions	 29
Interfaces	 30

Extending Interfaces	 32
Indexed Types	 32
Interface Implementation	 32

Discriminated Union Types	 33
Working with Interfaces	 35
Optional Properties	 36
Read-Only Properties	 37



Contents    ◾    vii

Checks for Extra Properties	 38
Functional Types	 40
Indexed Types	 41

INTEGRATED DEVELOPMENT ENVIRONMENTS	 43

Node-Based Compilation	 43
Creating a tsconfig.json File	 44

Chapter 2    ◾   � Key Concepts of TS	 47
CLASSES	 47

Inheritance	 48
Interface Inheritance	 49
Class Inheritance	 50

Access Modifiers	 51
Public by Default	 51
Private Modifier	 52
Protected Modifier	 53
Readonly Modifier	 55
Type Iterator Modifier	 55
Parameter Properties	 58
Accessors (Getters/Setters)	 58
Static Properties	 59

Abstract Classes	 60
Constructors	 61

Using a Class as an Interface	 63
FUNCTIONS	 64

Types of Functions	 64
Adding Types to a Function	 64
Inferring Types	 65
Best General Type	 66
Context Type	 67



viii    ◾    Contents

Anonymous Functions	 68
Type Compatibility	 69

Optional Parameters and Default Parameters	 70
Rest Parameters	 73

this Keyword	 74
Keyword “this” and Arrow Functions	 75
this Parameters	 77
this Parameters for Callback Functions	 78

Overloads	 80
GENERICS	 83

Exploring the World of Generics	 83
Working with Generalized Type Variables	 84
Generalized Types	 86
Generalized Classes	 88
Limitations of Generalizations	 88

Using Generic Parameters in Generalization Constraints	 89
Using Class Types in Generalizations	 90

new Keyword	 91
ENUMS	 92

Constant Enums	 93
Declare Enums	 95

SYMBOLS	 96

Predefined Characters	 97

Chapter 3    ◾   � Modules and Namespaces	 99
WHAT IS NAMESPACE?	 99

WHAT IS MODULE?	 100

Export	 101
Export Validation	 102
Reexport	 102

Import	 103
Importing a Single Exported Item	 103



Contents    ◾    ix

Importing the Entire Module into a Single Variable, and 
Using It to Access the Exported Module Elements	 103
Importing a Module for the Sake of “Side Effects”	 103
Default Export	 103

Generating Code for Modules	 105
Optional Module Loading and Its Other  
Advanced Scenarios	 108
Working with Other JavaScript Libraries	 110

EXTERNAL MODULES	 110

Abbreviated External Module Declaration Entry	 111
Module Declarations Using Wildcard Characters	 111

UMD MODULES	 112

STRUCTURING MODULES	 112

Export as Close to the Top Level as Possible	 112
If You Export Only One Class or One Function,  
Use Export Default	 112
If You Are Exporting Multiple Objects, Put Them  
on the Top Level	 113
Explicitly Define the Imported Names	 113
Use the Namespace Import Template When Importing  
a Large Number of Items	 113
Do Not Use Namespaces in Modules	 114
Risk Indicators	 114
Loading Modules	 115
Module Resolution	 117

Relative and Nonrelative Module Imports	 117
Module Resolution Strategies	 118
How Does Node.js Resolve Modules?	 119
Additional Flags of the Module Resolution System	 120
Base URL	 121

Path Mapping	 121
Virtual Directories with rootDirs	 123



x    ◾    Contents

Tracking Module Resolution	 124
What to Look for in the Trace?	 126

Chapter 4    ◾   � TS Runtime	 127
WHAT IS RUNTIME?	 127

NODE.JS	 127

WHY TYPESCRIPT IS HERE TOO?	 128

Why Node.js?	 128
WHAT IS DENO?	 128

Main Features of Deno	 129
Safety	 129
Module System	 129

Installation of Deno	 130
Installation in Windows	 130
Internal Part	 131
Safety	 132
Strict: True by Default	 133
Deno Modules	 133
Deno.core	 134
Deno Standard Modules	 134
Deno X	 134
Package Manager	 134
Lock File	 135
Web Standards	 135
WASM, RUST, Plugins	 136

Debugging	 136
Testing	 137
Integration Testing	 137
Compiler API	 137

dev_server	 138
INSTALLING AND COMPILING THE TS	 139

Installation via NPM	 139



Contents    ◾    xi

Installing as a Visual Studio Plugin	 140
Compiling an App	 140

MERGING DECLARATIONS	 142

Basic Concepts	 142
Merging Interfaces	 142
Merging Namespaces	 144
Merging Namespaces with Classes, Functions,  
and Enumerations	 145

Merging Namespaces with Classes	 145
Prohibited Merges	 146

Chapter 5    ◾   � TypeScript Architecture	 151
WHAT IS AN APPLICATION ARCHITECTURE?	 151

WHY DO WE NEED ARCHITECTURE?	 151

SINGLE-PAGE APPLICATION	 152

MULTI-PAGE ARCHITECTURE	 152

CREATING AN APPLICATION IN TYPESCRIPT	 153

MAKING AN APP	 154

COMPILATION: WATCH MODE	 155

MV* ARCHITECTURE	 155

MVC (MODEL VIEW CONTROLLER)	 155

Model	 156
View	 156
Controller	 157

MVC FRAMEWORKS	 159

BACKBONE	 160

AURELIA	 161

ANGULAR	 162

REACT	 164

Webpack Configuration	 166
TEST-DRIVEN DEVELOPMENT	 166



xii    ◾    Contents

MODULE, INTEGRATION, AND ACCEPTANCE TESTINGS	 168

Module Testings	 168
Integration Testings	 169
Acceptance Testings	 169

REFACTORING	 170

TYPESCRIPT 4.2 RELEASE	 170

SUPPORT FOR REST ELEMENTS IN THE FIRST AND 
INTERMEDIATE PARAMETERS OF TUPLES OF TYPES	 170

SAVING-TYPE ALIASES	 171

THE ABSTRACT MODIFIER IN CONSTRUCTOR  
SIGNATURES	 171

Strict Checks for the In Statement	 172
UNUSED VARIABLES DURING ARRAY 
DESTRUCTURIZATION	 172

TYPE ARGUMENTS	 172

Future Plans	 173

Chapter 6    ◾   � Appraisal	 175

APPENDIX, 177
INDEX, 181



xiii

Acknowledgments

There are many people who deserve to be on this page, for this book would 
not have come into existence without their support. That said, some names 
deserve a special mention, and I am genuinely grateful to:

•	 My parents, for everything they have done for me

•	 My siblings, for helping with things back home

•	 The Parakozm team, especially Aruzhan Nuraly and Madina 
Karybzhanova, for offering great amounts of help and assistance 
during the book-writing process

•	 The CRC team, especially Sean Connelly and Jessica Vega, for ensur-
ing that this book’s content, layout, formatting, and everything else 
remains perfect throughout

•	 Reviewers of this book, for going through the manuscript and pro-
viding their insight and feedback

•	 Typesetters, cover designers, printers, and everyone else, for their 
part in the development of this book

•	 All the folks associated with Zeba Academy, either directly or indi-
rectly, for their help and support

•	 The programming community in general, and the web development 
community in particular, for all their hard work and efforts

Sufyan bin Uzayr



http://taylorandfrancis.com


xv

About the Author

Sufyan bin Uzayr is a writer, coder, and entrepreneur with more than a 
decade of experience in the industry. He has authored several books in 
the past, pertaining to a diverse range of topics, ranging from history to 
computers/IT.

Sufyan is the Director of Parakozm, a multinational IT company spe-
cializing in EdTech solutions. He also runs Zeba Academy, an online 
learning and teaching vertical with a focus on STEM fields. He special-
izes in a wide variety of technologies, such as JavaScript, Dart, WordPress, 
Drupal, Linux, and Python, and he holds multiple degrees, including ones 
in management, IT, literature, and political science.

Sufyan is a digital nomad, dividing his time between four countries. He 
has lived and taught in universities and educational institutions around 
the globe. He takes a keen interest in technology, politics, literature, his-
tory, and sports, and in his spare time, he enjoys teaching coding and 
English to young students.

Learn more at sufyanism.com.



http://taylorandfrancis.com


1DOI: 10.1201/9781003203728-1

C h a p t e r  1

TypeScript
Introduction to TypeScript

TypeScript (TS) is a typed extended set of JavaScript (JS) that compiles to 
plain JS. As an analogy, if JS was CSS, then TS would be SCSS.

All valid JS code you write is also valid TS code. However, by using TS, 
you get to use static typing and the latest features that compile into simple 
JS that is supported by all browsers. TS aims to solve the JS scaling prob-
lem, and it works pretty well.

In this book, you’ll start by reading about the various features of TS and 
why learning it is a good idea. The rest of this book will focus on install-
ing and compiling TS, along with some popular text editors that offer you 
support for TS syntax and other important features.

WHAT IS TS?
TS is a kind of updated version of the JS language. It can run on Node.js 
or any web browser that supports ECMAScript 3 or higher. TS is a stati-
cally compiled language that provides optional static typing, classes, and 
an interface. It allows you to write simple and clean JS code. So, adopting 
TS can help you create more easily deployable and more reliable software.

A BRIEF HISTORY OF TS
TS development began in late 2012. Although it originated in Microsoft, 
and its actual creator is the programmer Anders Hejlsberg, also known as 

https://doi.org/10.1201/9781003203728-1


2    ◾    TypeScript for Beginners

the creator of such languages as Delphi and C#, this project immediately 
began to develop as an OpenSource. And from the very beginning, the new 
language began to spread rapidly due to its flexibility and performance. A 
lot of projects that were written in JS were transferred to TS. The popular-
ity and relevance of the ideas of the new language has led to the fact that a 
number of these ideas will later become part of the new JS standard. And 
the new version of one of the most popular frameworks for web – Angular 
2/4/5/6 is completely written in TS jointly by Microsoft and Google.

WHY SHOULD YOU CHOOSE TS?
However, it would seem that there is no need for another programming 
language for the client side in the web environment, if traditional JS, 
which is used on almost every site, which is owned by many developers 
and whose support in the programming community is quite high, also 
copes with all the same work. But TS is not just a new JS.

First, it should be noted that TS is a strongly typed and compiled lan-
guage, which may be closer to programmers of Java, C#, and other strongly 
typed languages, although the output of the compiler creates the same JS, 
which is then executed by the browser. However, strong typing reduces the 
number of potential errors that could occur when developing in JS.

Second, TS implements many of the concepts that are common to 
object-oriented languages, such as inheritance, polymorphism, encapsu-
lation, access modifiers, and so on.

Third, the potential of TS makes it faster and easier to write large com-
plex programs, and therefore easier to maintain, develop, scale, and test 
them than in standard JS.

Fourth, TS develops as an opensource project and, like many projects, 
is hosted on GitHub. Repository address – https://github.com/Microsoft/
TypeScript. In addition, it is cross-platform, which means that we can use 
both Windows and macOS or Linux for development.

At the same time, TS is a superset of JS, which means that any JS pro-
gram is a TS program. In TS, you can use all the constructs that are used 
in JS – the same operators, conditional, cyclic constructs. Moreover, the 
TS code is compiled in JS. Ultimately, TS is just a tool that is designed to 
make application development easier.

Although this language does not provide additional functionality in 
the runtime, it offers a number of features that help developers write more 
reliable and easier-to-maintain code than in the case of pure JS.

https://github.com
https://github.com


TypeScript    ◾    3

How Does TS Help Developers Code Easier?

As its name suggests, it adds a type system to JS. If in JS the type of a 
variable is assigned dynamically, then in TS we have to predefine its type 
immediately at the time of declaration.

If we are talking about JS, then you can first assign an integer value to a 
variable, and then reassign it to a string value.

let jsVar = 0;
jsVar = "js";

In the case of TS, you can restrict this behavior by declaring the type for 
the variable explicitly. As a result, if you try, for example, to assign a string 
to a variable of type number, an error will occur.

let tsVar: number = 0;
tsVar = "ts"; //error

In fact, this is what distinguishes TS from JS. It uses types, which allows us 
to avoid stupid errors in the code.

How Exactly Does TS Improve JS?

The lack of typing cannot be called a disadvantage of JS, but it gives pro-
grammers too much freedom, which inevitably leads to writing code with 
errors.

let aNumber = 123;aNumber = {
name: "Sufyan",
age: 29
}

In the JS example above, nothing prevents the developer from presenting 
the object via the aNumber variable. This approach, although it will not 
cause the program to crash, will completely eliminate the possibility of 
self-documenting the code at the expense of variable names.

TS easily solves this problem by defining the type of a variable when it is 
declared, without further assigning it to a value of another type.

let aNumber: number = 123;



4    ◾    TypeScript for Beginners

If this variable is later accessed by another developer, they can be sure 
that its value is a number, as the name suggests.

function isEligible(personObj) {
return personObj.age > 34;
}
let john = {
name: "Josh",
age: 23
};
isEligible(john);

In this case, the isEligible function expects an object with the age 
field. But in JS, there is no way to guarantee that the passed argument will 
be exactly an object, or that it will contain the age field.

Again, TS has a solution for this.

interface Person {
name: string;
age: number;
}
function isEligible(personObj: Person) {
return personObj.age;
}
let john = {
name: "Josh",
age: 23
};
isEligible(john);

So far, this code may not be clear to you. But note that it guarantees that 
the passed variable has the type Person, which is defined at the beginning.

Using TS will save you from hundreds of careless errors in the code, 
which sometimes turn out to be so stupid that you want to tear your hair 
out. In addition, your code will become better self-documented and easier 
to maintain.

If you didn’t have enough auto-substitution options for JS code in 
the integrated development environment (IDE), then you should get 
acquainted with TS all the more. The presence of types gives this language 
the ability to offer more precise substitutions in the IDE.



TypeScript    ◾    5

TS AS COMPARED TO JS
What Is JS?

JS was introduced in 1995 as a loosely typed scripting language devel-
oped by Netscape to add more dynamics to HTML pages. But the web 
has changed a lot since then. What were simple pages with a single form 
in 1995 are now large and complex web applications. JS was not origi-
nally designed for developing complex enterprise applications. Currently, 
most browsers support the ECMAScript 5 standard. That is, usually when 
someone says “JavaScript,” he means the language of the ES5 standard, 
although ES5 is not the latest version of the standard. In 2015, the 6 stan-
dard ES6 was introduced, in 2016 — ES7 or ES 2016. But not all browsers 
fully support the new features.

The incompatibility problem can be solved by using transpilers such as 
Babel or using the TS language.

TS Strengths

The main argument in favor of TS is strict static typing. So, what is the 
difference between static and dynamic typing? When using static typing, 
less documentation is required, in fact your code has better documenta-
tion. For most of the code, it is very useful that the types of arguments and 
results of the function execution are documented, always knowing exactly 
what to expect at the input and output.

Moreover, when you look at your old JS code, many nuances are not 
clear, you need to study the call chain in detail to understand what type 
of result will be returned in a certain function. Of course, you can use 
JSDoc, which allows you to write inline documentation, but it needs to be 
constantly updated. When using TS, you only have one source of truth.

Also, the advantage of static typing is the possibility of autocompletion 
in code editors. Writing code becomes easier, because you don’t have to 
constantly go through the documentation and look for the name of the 
method you need.

Also, refactoring becomes less painful, as the compiler will tell you if 
something is broken, which will avoid runtime errors. But still there are a 
couple of drawbacks you need more time to learn and write code at the ini-
tial stages, an additional layer of complexity appears, freedom of thought 
is limited, you cannot just add a property or assign a value of another type. 
Strict typing does not guarantee that there are no errors in the program.



6    ◾    TypeScript for Beginners

If you are not familiar with TS/ES6/ES7 and you need to write a small 
web application from a couple of pages, the fastest way to do this is to use 
regular JS (ES5). But it is also worth noting that ES5 is considered an out-
dated (deprecated) version of JS, so it is better for your project and career 
in general to go deeper into learning the new ES6, ES7, and TS standards. 
At first, you will be intimidated by all these assemblers and transpilers, but 
your training costs will be justified if you want to stay in the trend of web 
development. If you work in a team and you need to create a scalable prod-
uct that will need to be supported for a long time, write it in TS. Since ES6/
ES7 now needs to be translated to ES5, you can use TS instead of Babel, so 
you will maintain type security and your code will work in all browsers.

TS brings many benefits to performance and to the developer experience. 
TS is not unique to Angular; other powerful integrated environments, such 
as React and Vue, are starting to use TS to allow development teams to build 
applications that are robust, resilient, and scalable. JS and TS are constantly 
evolving but do not compete with each other. TS was created to complement 
and improve JS, not replace it. In the future, they may become very similar 
in function, but for now, TS remains a statically typed alternative.

Syntactic Sugar

TS provides a very simple syntax for checking the type of an object at 
compile time. This syntax is known as syntactic sugar, or, more formally, 
type annotation. Consider the following version of our JS source code, 
written in TS:

var test: string = "this is a string";
 test = 1;
 test = function(a, b) {return a + b; }

Notice that in the first line of this snippet, we entered a colon: and the string 
keyword between our variable and its assignment. This type annotation syn-
tax means that we set the type of our variable as a string type and that any 
code that does not adhere to these rules will result in a compilation error. 
Running the previous code through the TS compiler will cause two errors:

hello.ts(3,1): error TS2322: Type ‘number’ is not 
assignable to type ‘string’. hello.ts(4,1): error 
TS2322: Type ‘(a: any, b: any) => any’ is not 
assignable to type ‘string’.



TypeScript    ◾    7

The first mistake is pretty obvious. We have specified that the test vari-
able is a string, and therefore trying to assign a number to it will cause a 
compilation error. The second error is similar to the first one and, in fact, 
says that we can’t assign the function to a string.

Thus, the TS compiler introduces strong or static typing in our JS code, 
giving us all the advantages of a strongly typed language. Therefore, TS is 
described as an extended JS variant.

TS STRUCTURE
Microsoft designed TS with specific architectural parameters in mind, 
which allow TS to integrate fully and easily with existing JS code, while 
providing robust features external to JS.

1.	Providing a Type Check: JS, being a freely typed language, is 
extremely lenient about the value assigned to its variables, and it 
does not create any structural contracts between these variables and 
the constructs that use them. Passing a number argument to a func-
tion that expects a string parameter does not generate errors in JS at 
design time, but will create chaos at runtime when the function body 
fails to use this argument correctly.

To avoid such problems at runtime, TS was designed as a strongly 
typed language that performs static type checking at compile time in 
JS. For flexibility, the TS type-checking capability is optional; how-
ever, most of the key benefits of TS are related to type-checking – this 
is the main reason for using TS! For example, type-checking allows 
you to use the language service layer of the language to create better 
tools that maximize performance and reduce errors.

2.	More Powerful Object-Oriented Programming: The syntactic 
sugar provided by TS will significantly reduce the amount of code 
while increasing its expressiveness. TS makes writing an object-
oriented code class fast. It provides us with classes, interfaces, and 
modules that allow us to properly structure code into encapsulated 
reusable structures, making it easier to maintain and scale. Inside 
classes, you can also specify the visibility level of class properties and 
methods using the provided TS modifiers-public, private, and pro-
tected. There are many other abstractions that will make you, as a 
developer, more productive.



8    ◾    TypeScript for Beginners

3.	Basic TS Compiler: The main task of the TS compiler is to manage 
the low-level mechanics of checking the type of code and convert-
ing it into valid JS code. The compiler uses static code analysis to 
reduce the chance of runtime errors. Typos in the code or passing 
the wrong type of argument to a function will cause the compiler to 
throw errors to warn us that something is wrong before we execute 
the code. This is extremely valuable, as even with the most complete 
set of tests, logical errors and extreme cases can cause the applica-
tion to crash at runtime. TS ensures that the type definitions we cre-
ate in the code are always used.

4.	TypeScript Standalone Compiler, TSC: The stand-alone TS com-
piler, often called tsc, is a high-level compiler that takes a TS file, .ts, 
and outputs a JS file, .js.

5.	Language Service: This component layer sits on top of the main TS 
compiler and provides the features needed to work in IDE and text 
editors: statement completion, code formatting and highlighting, 
syntax highlighting, and more. The language service also provides 
code refactoring: variable renaming, debugging, and incremental 
compilation.

6.	Tool Integration: TS offers type annotations that allow IDEs and 
text editors to perform comprehensive static code analysis. These 
annotations allow these tools to make smart suggestions, making the 
code much more predictable. In turn, IDEs and text editors can offer 
better auto-completion and refactoring of TS code.

Basic TS Types

TS is a statically typed language. The type cannot be changed during pro-
gram execution. This allows you to reduce a large number of errors and 
identify many of them even at the compilation stage.

TS has several simple data types: numbers, strings, structures, Boolean. 
It supports all types that are available in JS, complementing the conve-
nient enum type.



TypeScript    ◾    9

Boolean
The most basic type is the Boolean true/false, which is called Boolean in 
JS and TS.

let isEnabled = true;
let isAlive: boolean = false;
 
console.log(isEnabled);
console.log(isAlive);

Number
Unlike various object-oriented languages such as Java, C#, and C++, which 
provide different data types, such as int, float, and decimal, for storing a 
numeric value, TS has only one numeric data type, called number. A vari-
able with the number data type can contain any numeric literal with float-
ing, hexadecimal, and binary or octal values.

let decimal: number = 6;
let hex: number = 0xf00d;
let binary: number = 0b1010;
let octal: number = 0o744;

String
Another important part of programs in web pages and servers is text data. 
As in other languages, TS uses the same “string” notation for such data. 
Like JS, TS uses double (“) or single (‘) quotes to frame text data.

let name: string = "bob";
name = 'smith';

You can also use strings with templates, which can be multi-line and have 
built-in expressions. These strings are surrounded by back apostrophes or 
quotation marks (’) and inline expressions are denoted as ${expr}.

let name: string = 'Gene';
let age: number = 37;
let sentence: string = 'Hello, my name is ${ name }. 
 
I'll be ${age + 1} years old next month.'



10    ◾    TypeScript for Beginners

The equivalent of this sentence declaration:
let sentence: string = "Hello, my name is " + name + 
".\n\n" +
   "I’ll be " + (age + 1) + " years old next month."

Array
TS, like JS, has arrays of values. The array type can be defined in one of 
two ways. The first is to denote the type of array elements before []:

let list: number[] = [1, 2, 3];

The second way is to use the generalization Array<elemType>:

let list: Array<number> = [1, 2, 3];
</number>

Tuple
The Tuple type gives you the ability to declare an array with a known fixed 
number of elements that do not have to be of the same type. For example, 
you want to have the Tuple value as a pair of “string” and “number”:

// Declare a tuple type
let x: [string, number];
// Initialize it
x = ["hello", 10]; // OK
// Initialize it incorrectly
x = [10, "hello"]; // Error

When you get an element with a known idex, the type of that element will 
be returned:

console.log(x[0].substr(1)); // OK
console.log(x[1].substr(1)); // Error, 'number' does 
not have 'substr'

When an element with an idex outside the known range is received, the 
Union type is returned:

x[3] = 'world'; // OK string type can be assigned 
(string | number)



TypeScript    ◾    11

console.log(x[5].toString()); // OK, 'string' and 
'number' both have the toString method
x[6] = true; // Error, boolean is not (string | 
number)

The Union type will be described later in the Advanced types section.

Tuples Deconstruction
Since tuples use array syntax, they can be deconstructed or disassembled 
in two ways. The first one, using a simple array syntax, looks like this:

console.log('tupleType[0]: ${tupleType[0]}');
console.log('tupleType[1]: ${tupleType[1]}')

Here we simply write each property of the tupleType variable to the con-
sole, referring to the index in the array, i.e., tupleType[0] and typleType[1]. 
The output of this code will be as follows:

tupleType[0]: test tupleType[1]: false

So, we created a tuple with a string and a Boolean value and deconstructed 
it using array syntax. Note that since we use the array syntax, we can 
request the third property of this tuple:

console.log('tupleType[2]: ${tupleType[2]}');

Since our tuple does not have a third property, typleType[2] will be unde-
fined, as can be seen from the output of this line of code:

tupleType[2]: undefined

This is clearly far from perfection. The best way to deconstruct a tuple is 
to use the array syntax to create the corresponding tuple on the left side of 
the assignment:

et [t1, t2] = tupleType;
console.log('t1: ${t1}');
console.log('t2: ${t2}');



12    ◾    TypeScript for Beginners

Here we define an array of two elements named t1 and t2 and assign this 
array a tuple value. Then we write t1 and t2 to the console. The output of 
this code looks like this:

t1: test
t2: false

This method of deconstructing a tuple is preferred for a simple reason. We 
can’t define an array of elements that exceeds the number of properties in 
the tuple. Therefore, the code below will not work.

let [et1, et2, et3] = tupleType;

Here we are trying to deconstruct our tuple of two properties into a tuple 
of three properties. The compiler will throw an error in this case:

error TS2493: Tuple type '[string, boolean]' with 
length '2' cannot be assigned to tuple with length '3'

Optional Tuple Elements
Like function signatures, we can also have optional tuple elements. This is 
achieved with the help of the symbol? in the tuple definition:

let optionalTuple: [string, boolean?];
optionalTuple = ["test2", true];
console.log('optionalTuple: ${optionalTuple}');
optionalTuple = ["test"];
console.log('optionalTuple: ${optionalTuple}');

Here we have a specific variable named optionTuple with a required string 
property and an optional Boolean property. Then we assign it the value 
[“test2”, true] and write it to the console. After that, we assign the value 
[“test”] to the same tuple and write the value to the console. Since the 
second optionTuple property is essentially optional, this code will be com-
piled cleanly and will produce, as expected, the following results:

optionalTuple: test2,true
optionalTuple: test



TypeScript    ◾    13

Enum
Enum is a special type borrowed from other languages like C#, C ++, and 
Java that provides a solution to the special numbers problem. Enum binds 
a human-readable name for a specific number. As in languages like C#, 
the enum type is a more convenient way to give clear names to a set of 
numeric values.

enum Color {Red, Green, Blue};
let c: Color = Color.Green;

By default, enums start with 0. You can change this by directly specifying 
a value for one of the enum members. For example, we can start the previ-
ous example with 1 instead of 0:

enum Color {Red = 1, Green, Blue};
let c: Color = Color.Green;

Or even set values for all members:

enum Color {Red = 1, Green = 2, Blue = 4};
let c: Color = Color.Green;

A convenient feature of enumerations is that you can also get the name of 
an enumeration member by passing its numeric value. For example, if we 
have a value of 2 and we want to see what it corresponds to in the Color 
enumeration described above, we can do it like this:

enum Color {Red = 1, Green, Blue};
let colorName: string = Color[2];
 
alert(colorName);

Let’s consider the following code:

enum DoorState {
  Open,  
 Closed,
  Ajar
 }

Here we have defined an enum named DoorState to represent the state 
of the door. Valid values for this door state are Open, Closed, or Ajar. 



14    ◾    TypeScript for Beginners

Under the hood (in generated JS), TS will assign a numeric value to each 
of these human-readable enumeration values. In this example, the value 
of the DoorState enumeration.Open will be equal to the numeric value 0. 
The same is true for the DoorState enumeration.Closed will be equal to the 
numeric value 1, and the value of the enum is DoorState.Ajar will be equal 
to 2. Let’s take a quick look at how we’ll use these enum values:

var openDoor = DoorState.Open;
console.log('openDoor is: ${openDoor}');

Here, the first line of this code snippet creates a variable named openDoor 
and sets its value to DoorState.Open. The second line simply writes the 
value of the openDoor variable to the console. The output will look like 
this:

openDoor is: 0

This clearly shows that the TS compiler has replaced the value of the 
DoorState enumeration.Open to the numeric value 0.

Now let’s use this enumeration in a little different way:

var closedDoor = DoorState["Closed"];
console.log('closedDoor is: ${closedDoor}');

This code snippet uses the string value “Closed” to search for the enum 
type and assigns the resulting enum value to the closedDoor variable. The 
output of this code will be as follows:

closedDoor is: 1

This example clearly shows that the enum value for DoorState is.Closed 
is combined with the enum value for DoorState [“Closed”], since in both 
cases the numeric value 1 is returned. Enumerations are a convenient way 
to define an easy-to-remember, easy-to-read name for a special number. 
Using human-readable enumerations instead of just throwing around 
various special numbers in our code makes the purpose of the code more 
clear. Use a value for the entire application named DoorState.Open or 
DoorState.Closed is much easier than remembering to set the value to 0 
for Open, 1 for Closed, and 3 for Ajar. In addition to making our code 



TypeScript    ◾    15

more readable and more understandable, using numbers also protects our 
code base every time these special numeric values change, since they are 
all defined in one place. The last thing I would like to mention about enu-
merations is that we can set the numeric value manually, if necessary, as 
follows:

enum DoorState {
   Open = 3,
   Closed = 7,
   Ajar = 10
 }

Here we have redefined the default enum values to set the value DoorState.
Open equal to 3, DoorState.Closed equal to 7 and DoorState.Ajar equal to 10.

String Enums
Another variant of the enum type is a string enumeration, in which 
numeric values are replaced with strings:

enum DoorStateString {
   Open = "open",
   Closed = "closed",
   Ajar = "ajar"
 }
var openDoorString = DoorStateString.Open;
 console.log('openDoorString = ${openDoorString}');

Here we have an enum named DoorStateString, where each of the enum 
values is now of type string. The output of this code snippet will be as 
follows:

openDoorString = open

As expected, the TS compiler returns the string “open”.

Any
We may need to describe the type of variables that we don’t know when 
we write our application. These values can be obtained from dynamic con-
tent, such as from a user or from a third-party library. In these cases, we 



16    ◾    TypeScript for Beginners

want to disable type checking and allow the values to pass validation at 
compile time. To do this, you need to use the any type:

let’s not be sure: any = 4;
notSure = " maybe a string instead";
notSure = false; / / ok, this is definitely boolean

The any type is a powerful way to work with existing JS, which allows 
you to gradually include more and more type checks at compile time. You 
can expect Object to play the same role as it does in other languages. But 
variables of the Object type only allow you to assign them any value. You 
can’t call undeclared methods from them, even those that may exist at the 
execution stage of the program:

let looselyTyped: any = 4;
// OK, ifItExists might exist at runtime
looselyTyped.ifItExists();
// OK, toFixed exists (but the compiler doesn’t check)
looselyTyped.toFixed();

let strictlyTyped: unknown = 4;
strictlyTyped.toFixed();

The any type can also be useful if you know some part of the variable type, 
but not all of it. For example, you can have an array with elements of dif-
ferent types:

let list: any[] = [1, true, "free"];
 
list[1] = 100;

Void
Void is the opposite of Any: the absence of any types. It is most often used 
as the return type of functions that do not return any value.

function warnUser(): void {
   alert("This is my warning message");
}

Declaring variables with the void type is useless, because you can only 
assign them undefined or null values:

let unusable: void = undefined;



TypeScript    ◾    17

Null and Undefined
The Null and Undefined types correspond to the same types in JS. These 
types are subtypes for all other types by default.

let n: number = null; / / Primitive types can be null
let m: number = undefined; / / Primitive types can be 
undefined
let x = null; / / same as x: any = null
let y = undefined; / / same as y: any = undefined
let e: Null; / / Error
let r: Undefined; / / Error

If you declare a variable of type null or undefined, then such a variable 
can only be assigned the value null or undefined, respectively, which has 
no practical application.

let n: null = null; / / Only this value can be 
assigned to
n = 1; / / Error!
let m: undefined = undefined;
m = "some string"; / / Error!

It is worth noting that if you use the –strictNullChecks compiler directive, 
null and undefined can only be assigned to a variable of type void and to 
variables of type null or undefined, respectively. This helps to avoid a lot of 
mistakes. In this case, if the variable needs to be assigned a value with the 
string or null or undefined type, you can use the string | null | undefined 
union type.

Never
The never type represents a type whose value never occurs. For example, 
never is a type that returns a function that always throws exceptions or 
that never exits (for example, an infinite loop). Variables can also have this 
type, for example, in order to never take the value true.

The never type is a subtype of any type. A variable of type never can 
be assigned to a variable of any other type. On the other hand, there 
is no such type that will be a subtype of this type, just as a variable of 
this type cannot be assigned anything other than a variable of the same 
type (never).



18    ◾    TypeScript for Beginners

function error(message: string): never {
throw new Error (message);
}
/ / The output type of fail() is never
function fail() {
return error ("Something failed");
}
/ / no exit from this function
function infiniteLoop () function: never {
while (true) {
}
}

Symbol
The Symbol type is primitive and corresponds to the same type in JS. 
This type provides unique identifiers that can be used as keys for object 
properties.

Values of the Symbol type implement a global ‘Symbol’ object, which 
has a set of methods and properties that can be called as functions.

var secretKey = Symbol();
var obj = {};
obj[secretKey] = "secret message"; / / Symbol as 
property
obj[Symbol.toStringTag] = "test";

Type Assertions

Sometimes you find yourself in a situation where you know more about 
the value of a variable than TS does. This usually happens when you know 
that the type of an entity may be more specific than its current type.

Type assertion is like typecasting in other languages, but it doesn’t do any 
special checks or data restructurings. The type conversion has no effect at the 
execution stage of the program and is used only by the compiler. TS assumes 
that the programmer will do all the necessary checks that are required.

The type conversion can be done in two ways. The first is the use of 
angle brackets syntax:

let someValue: any = "this is a string";
let strLength: number = (<string>someValue).length;



TypeScript    ◾    19

The second is as-syntax:

let someValue: any = "this is a string";
let strLength: number = (someValue as string).length;

The two examples given are completely similar. To use one or the other is 
by-and-large a choice of preference; however, when TS is used in conjunc-
tion with JSX, only typecasting via syntax is allowed.

The Let Keyword
The let keyword is new in JS. A variable declared with let will only be 
visible in the current (local) scope. This avoids a lot of problems in JS. 
Therefore, it is recommended to use let instead of var wherever possible.

TS Compiler

The TypeScript compiler (also known as “tsc”) is the basis of many packages, 
plugins, and tools that work with TS, although we don’t often call the tsc 
directly, since we configure the behavior of the tsc inside the packers we use.

When we install TS globally npm i-g TS, we get a tool called tsc. If we 
run this command with the help tsc –help flag, we will see a large number 
of options that go with it. The main ones that you should pay attention to 
are the first examples at the top of examples:

tsc hello.ts
    tsc --outFile file.js file.ts
    tsc @args.txt
    tsc --build tsconfig.json

If we create a hello.ts file, write const four:number = 2 + 2 inside, and then 
run tsc hello.ts, we get a compiled file hello.js with the value var four = 2 + 2;.

We will rarely use tsc in this way, because tsc is included in plugins such 
as Webpack, Parcel, and Angular CLI.

Instead, we use tsc –init. It creates a file in the root directory named 
tsconfig. json. It contains all the default values. This is very convenient, 
because instead of defining all these parameters on the command line 
when it is called, we define them in this TS configuration file. When we run 
the tsc command, the compiler will take the settings from tsconfig. json.

Also, we can change the configuration settings, for example, change 
the value of ourDir to ./dist. Now all compiled files should be saved to an 
external directory ./dist.



20    ◾    TypeScript for Beginners

Everything defined in this file will specify which parameters the TS 
compiler will use when compiling. When TS starts “complaining” about 
not using enough types, you can start disabling some of these warnings 
or errors.

Variable Declarations

Let and const are relatively new types of variable declarations in JS. As we 
mentioned earlier, let is similar to var in some ways, but allows users to 
avoid some of the common errors encountered in JS. const is an extension 
of let that prevents variables from being overridden.

Since TS is an add-on to JS, the language also supports let and const. 
Next, we’ll go into more detail about these new variable declarations and 
explain why they are preferred over var.

var Declarations
The variable declaration in JS always occurs using the var keyword.

var a = 10;

As you probably understood, we just declared a variable with the name a 
and the value 10.

We can also declare a variable inside a function:

function f() {
    var message = "Hello, world!";
    return message;
}

and we also have access to these variables inside other functions:

function f() {
    var a = 10;
    return function g() {
        var b = a + 1;
        return b;
    }
}
 
var g = f();
g(); // returns 11;



TypeScript    ◾    21

In the example above, g captures (encloses) the variable a declared in f. At 
any point where g is called, the value of a will be associated with the value 
of a in the function f. Even if g is called once and f has finished executing, 
it is possible to access and modify a.

function f() {
var a = 1;

a = 2;
var b = g();
a = 3;

return b;

function g() {
return a;
}
}

f (); / / returns 2

Scoping
The var declaration has some strange scope rules for those using other 
programming languages. See the following example:

function f(shouldInitialize: boolean) {
   if (shouldInitialize) {
       var x = 10;
   }
 
   return x;
}
 
f(true);  // returns ’10’
f(false); // returns ’undefined’

Some may need to re-look at that example. The variable x was declared 
inside the if block, and we can access it outside of that block. This is 
because var declarations are available anywhere inside the function, 
module, namespace, or global scope that contains them, regardless of the 
block in which they are contained. Some call it var-visibility or function-
visibility. The parameters are also visible inside the function.



22    ◾    TypeScript for Beginners

These scope rules can cause several types of errors. One annoying prob-
lem is that it is not an error to declare a variable multiple times:

function sumMatrix(matrix: number[][]) {
   var sum = 0;
   for (var i = 0; i < matrix.length; i++) {
        var currentRow = matrix[i];
        for (var i = 0; i < currentRow.length; i++) {
           sum += currentRow[i];
       }
    }
    return sum;

It’s probably easy to see that the internal for loop will accidentally over-
write the variable i, because i has scopes inside the sumMatrix function. 
Experienced developers know that similar errors slip through code review 
and can be the cause of endless frustration.

Block Viewport
When a variable is declared using let, it is used in block scope mode. 
Unlike variables declared with var, whose scopes extend to the entire 
function they are in, block-scoped variables are not visible outside their 
nearest block or for loop.

function f(input: boolean) {
let a = 100;

if (input) {
// Here we see the variable 'a'
let b = a + 1;
return b;
}

/ / Error: 'b' does not exist in this block
return b;
}

Here we have two local variables a and b. The scope of a is bounded by the 
body of the function f, while the scope of b is bounded by the if condition 
block.

Variables declared in the catch block have the same visibility rules.

try {
 throw "oh no!";
}



TypeScript    ◾    23

catch (e) {
   console.log("Oh well.");
}
// Error: 'e' doesn't exist here
console.log(e);

Another property of block scope variables is that they cannot be accessed 
before they are declared. While block scope variables are represented 
everywhere in their block, there is a dead zone at each point before they 
are declared. It’s just a way of saying that you can’t access them before the 
let statement, and luckily TS will remind you of that.

a++; / / it is incorrect to use 'a' before declaring 
it;
let a;

However, you can still close a variable with a block scope before declar-
ing it. However, an attempt to call such a function before declaring it will 
result in an error. If you compile to the ES2015 standard, this will cause 
an error; however, right now TS allows this and will not indicate an error.

function foo() {
   //okay to capture 'a'
   return a;
}

// illegal call 'foo' before 'a' is declared
// runtimes should throw an error here
foo();

let a;

Re-declaring and Escaping
In the case of var declarations, it doesn’t matter how many times you 
declare the same variable. You’ll always get one.

function f(x) {
    var x;
    var x;
 
    if (true) {
      var x;
    }
}



24    ◾    TypeScript for Beginners

In the example above, all the declarations of x actually point to the 
same x, and this is perfectly acceptable. This is often a source of bugs. So, 
it’s a good thing that the let declarations don’t allow this.

let x = 10;
let x = 20; / / Error: cannot redefine 'x' in the same 
scope

Variables don’t have to both be block-scoped in TS for the compiler to 
indicate an error.

function f(x) {
let x = 100; / / error: intersects with function 
parameter
}

function g() {
let x = 100;
var x = 100; / / error: cannot declare 'x' twice
}

This does not mean that a variable with block scope cannot be declared 
with a variable with scope in the same function. A variable with a block 
scope just needs to be declared in its block.

function f(condition, x) {
   if (condition) {
      let x = 100;
      return x;
   }
 
   return x;
}
 
f(false, 0); // returns 0
f(true, 0);  // returns 100

The method of introducing a new name in a nested area is called hiding. 
This is a kind of two-bladed sword, because it can introduce some bugs, as 
well as get rid of others. For example, imagine how we could rewrite the 
sumMatrix function using the let variables.



TypeScript    ◾    25

function sumMatrix(matrix: number[][]) {
   let sum = 0;
    for (let i = 0; i < matrix.length; i++) {
       var currentRow = matrix[i];
       for (let i = 0; i < currentRow.length; i++) {
           sum += currentRow[i];
       }
    }
 
    return sum;
}

This version of the loop does the summation correctly, because the i of the 
inner loop overlaps the i of the outer one.

Such concealment should usually be avoided, so that the code is cleaner. 
But in some scenarios, this method may be ideal for solving the problem. 
You should use the best solution at your discretion.

Closure of Variables with Block Scope Viewability
When we first touched on the closure of variables with the var declaration, 
we briefly looked at how variables behave when closed. To better under-
stand the point, imagine that each time a new scope appears, it creates 
its own “environment” for variables. This environment and its externally 
captured variables can exist even after all expressions inside the scope 
have completed their execution.

function myFavoriteCity() {
   let getCity;
 
   if (true) {
       let city = "Seattle";
       getCity = function() {
          return city;
      }
   }
 
   return getCity();
}

Because we have captured the city variable from its environment, we can still 
access it, despite the fact that the if block has finished executing. Remember 



26    ◾    TypeScript for Beginners

our previous example with setTimeout. We ended up needing to use IIFE to 
capture the state of a variable for each iteration of the for loop. As a result, 
we created a new variable environment each time for our captured ones. 
This was a bit of a pain, but thankfully we won’t need to do it again in TS.

Let declarations behave very differently when they are part of a loop. 
Instead of introducing a new environment for the loop, they introduce a 
new scope for each iteration. Since this is what we did with our IIFE, we 
can change our old setTimeout example using let declarations.

for (let i = 0; i < 10 ; i++) {
   setTimeout(function() {console.log(i); }, 100 * i);
}

and as expected, this will print out the following:

0

1

2

3

4

5

6

7

8

9

Constant Declarations

Constant declarations are another way to declare variables.

const numLivesForCat = 9;

They are the same as let, only, according to their name, their value cannot 
be changed after they have already been assigned a value once. In other 
words, all the let scope rules apply to them, but you can’t reassign them. 
The value they are associated with is immutable.



TypeScript    ◾    27

Let or Const?
We have two ways of declaring with similar rules for their scope, so it begs 
the question of which one to use. The answer will be the same as for most 
broad questions: it depends on the circumstances.

Applying the principle of the lowest level of privileges, all variable dec-
larations that you do not plan to change in the future should use const. 
This is because if a variable should not change its value, other developers 
who are working on the same code should not be able to write the object. 
This should only be allowed if there is a real need to reassign the variable. 
Using const makes the code more predictable and understandable when 
explaining the data flow.

Destructuring

Another innovation from the ECMAScript 2015 standard, which is in TS, 
is destructuring.

The simplest form of destructuring is using an array:

let input = [1, 2];
let [first, second] = input;
console.log(first); // outputs 1
console.log(second); // outputs 2

This creates two new variables named first and second. In essence, this is 
the equivalent of an index call, just more convenient:

first = input[0];
second = input[1];

Destructuring also works with previously declared variables:

// swap variables
[first, second] = [second, first];

And with the function parameters:

function f([first, second]: [number, number]) {
  console.log(first);
  console.log(second);
}
f(input);



28    ◾    TypeScript for Beginners

You can create a variable for the remaining list items using the …name 
syntax:

let [first, …rest] = [1, 2, 3, 4];
console.log(first); // outputs 1
console.log(rest); // outputs [2, 3, 4] 

Destructuring an Object
You can also destruct objects as shown in the following example:

let o = {
   a: "foo",
   b: 12,
   c: "bar"
}
let {a, b} = o;

This code creates new variables a and b from o.a and o.b. Note that you can 
skip c if you don’t need it.

Renaming Properties

You can also give different names to the properties:

let {a: newName1, b: newName2} = o;

If this syntax is a little confusing to you, you can write it in a different way 
to make it clearer:

let newName1 = o.a;
let newName2 = o.b;

The confusing thing is that the colon here does not denote the type. The 
type, if you specify it, still needs to be written after destructuring:

let {a, b}: {a: string, b: number} = o;

Default Values

Default values allow you to define a property, even if it was not set:

function keepWholeObject(wholeObject: {a: string, b?: 
number}) {
    let {a, b = 1001} = wholeObject;
}



TypeScript    ◾    29

The keepWholeObject function has a variable for wholeObject, as do the 
properties a and b, even if b is not defined.

Declaring Functions

Destructuring also works with function declarations; you can see an 
example below:

type C = {a: string, b?: number}
function f({a, b}: C): void {
  // …
}

Specifying default values is more commonly used for parameters, and 
using destructuring for this can look confusing. First of all, you should 
remember to specify the type before the default value.

function f({a, b} = {a: "", b: 0}): void {
// …
}
f (); / / ok, by default {a: "", b: 0}

Then, you should remember to give the default value for the optional 
properties of the destructured parameter when defining the function. 
Remember also that c was defined with the optional property b:

function f({a, b = 0} = {a: ""}): void {
// ...
}
f({a: "yes"}) // ok, by default b = 0
f() // ok, by default is {a: ""}, which also implies b 
= 0
f({}) // error, property ’a’ should be set in this 
case

Use destructuring with caution. As the previous example showed, all com-
plex destructuring expressions have many nuances. This is especially true 
for multi-level nested destructuring, which is really hard to understand 
even without renaming, default values, and type annotations. Try to keep 
the destructuring expressions small and simple.



30    ◾    TypeScript for Beginners

Interfaces

You can see that TS has obtained a lot from C#. Interfaces will be another 
example of such close collaboration.

An interface is a declaration that is similar to a class but does not have 
a method implementation. You can use it to describe the properties and 
methods of objects. At the same time, the interface does not have the 
implementation of functions and does not have the code itself – it is only 
necessary for the compiler to evaluate your implementations of the object 
(let me remind you that the class is also an object). Roughly speaking, an 
interface is a descriptive structure. Unlike classes, interfaces are uncompi-
lable and live only in TS runtime.

The interface declaration starts with the interface keyword. Then, the 
name of the interface comes, which is usually started with a capital letter 
I. This is not a prerequisite for using interfaces, but I recommend that you 
stick to this convention, if only because it is very convenient.

You can write interfaces anywhere: next to the code, at the beginning 
of a file, or even in a separate file. I recommend keeping the interface 
declaration where it is needed. For example, if the interface is used only 
within a single module (file), then you can safely keep it there. If the 
interface is used in many modules of the project, it is more appropriate 
to create a directory type and decompose the interfaces according to the 
logic there.

Let’s consider the simplest example of an interface for an object describ-
ing a VPS server:

interface IServer {
      hostname: string;
      location: string;
      active: boolean;
      public_address: string;
}

Now that we have defined the interface, we can use it in a variable. 
It is usually customary to say “implement the interface” rather than 
“use the interface,” since the compiler verifies that the interface is 
implemented correctly. And, in case of an incorrect implementation 
(there is not at least one property), it will output errors every time 



TypeScript    ◾    31

you do something wrong. For example, let’s forget to specify the pub-
lic_address property.

const server: IServer = {
      hostname: ’Pikachu’,
      location: ’RM1’,
      active: true
}
// Error → Type ’{ hostname: string; location: string; 
active: true; }’ is not assignable to type ’IServer’.
//          Property ’public_address’ is missing in 
type ’{ hostname: string; location: string; active: 
true; }’.

The compiler evaluated our initiatives, but did not see the public_address 
property in our object, that is why it shows an error.

But some structure cannot always be distinguished using only one 
interface. Of course, in TS, you can use one interface as a type for a prop-
erty of another interface.

interface IPublicAddress {
       netmask: string;
       gateway: string;
       address: string;
}
interface IServer {
       hostname: string;
       location: string;
       active: boolean;
       public_address: IPublicAddress;
}

Note that in addition to primitive types and other interfaces, you can 
describe functions in interfaces. This is done using arrow functions, for 
example, like this:

interface IServer {
      getPublicAddres: () => IPublicAddress;
}



32    ◾    TypeScript for Beginners

At the same time, no one forbids you to specify the parameters of the 
function:

interface ICalculator {
      sum: (a: number, b: number) => number;
}

Extending Interfaces
In TS, you can only extend interfaces, not inherit them. The extension is 
used if you need a new interface to have not only all the properties of an 
interface, but also have additional or unique properties for that interface.

interface IResponse {
      status: number;
}

interface ISlackResponse extends IResponse {
      ok: boolean;
}

Indexed Types
Sometimes you may need to allow storing in an object not only a pre-
known number of properties but also a variable, for example, when you 
implement the interface of a cache. In this case, you don’t know the name 
of the property, but you do know its type.

interface ICache {
      size: number;
      first: ICacheItem;
      last: ICacheitem;
      items: {
            [item: string]: ICacheItem;
      };
}

Now you can write any value to the items object that has a string type key 
and an ICacheItem type value.

Interface Implementation
In the case of an object, you simply assign a colon-separated variable to 
the interface you need as a type and implement it. With classes, it is some-
what different – classes must implement interfaces. If you forget to write an 



TypeScript    ◾    33

implementation of at least one method, the compiler will throw an error. For 
example, we will write a cache interface that will be implemented by the class.

interface ICacheItem {
      mtime: number;
      content: string;
}

interface IFileCache {
      set: (key: string, value: ICacheItem) => void;
      get: (key: string) => ICacheItem;
}

class FileCache implements IFileCache {
      store = new Map();

      set(key: string, value: ICacheItem): void {
            this.store.set(key, value);
      }

      get(key: string): ICacheItem {
            return this.store.get(key);
      }
}

The above is the simplest example of implementing a class, from which it 
is not entirely clear why an interface is needed here at all, when we could 
just create a class. Let’s get this straight. After writing the interface, we can 
implement it as many times as we like, for example, for the image storage 
cache or anything else.

Discriminated Union Types

We put this type in the section of interfaces, because it only applies to 
interfaces. Discriminated union type returns a new type that contains 
only the properties that are present in all interfaces.

Below are three interfaces that have one common property, the type 
of which is represented as a string literal. This is the property that will be 
represented in the new type.

interface Square {
      kind: ’square’;
      size: number;
}



34    ◾    TypeScript for Beginners

interface Rectangle {
      kind: ’rectangle’;
      width: number;
      height: number;
}

interface Circle {
      kind: ’circle’;
      radius: number;
}

Now let’s look at how we can use the discriminated union in practice. As 
you probably already guessed, we will calculate the area of the shapes that 
are described using the interfaces.

function area(s: Square | Rectangle | Circle): number 
{
      switch (s.kind) {
             case ’square’: return s.size * s.size;
             case ’rectangle’: return s.height * 
s.width;
             case ’circle’: return Math.PI * s.radius 
** 2;
      }
}

We could also use if to make the compiler understand which interface we 
are currently working with.

function area(s: Shape): number {
      if (s.kind === ’square’) {
            return s.size * s.size;
      }
      // ...
}

Now let’s talk about the case when the function can take not only a square, 
rectangle, and circle, but also a triangle. At the same time, there is no cor-
responding implementation for the triangle. In this case, the compiler will 
not throw an error if null and undefined are subtypes. However, if they are 
full-fledged types, we will either have to specify number | undefined as the 
type returned by the function, or add default in the case of using case, or 
else in the case of using if.



TypeScript    ◾    35

Working with Interfaces
The easiest way to see how interfaces work is to start with a simple example:

function printLabel(labelledObj: { label: string }) {
   console.log(labelledObj.label);
}
 
let myObj = {size: 10, label: "Size 10 Object"};
printLabel(myObj);

The compiler checks the printLabel call. This function takes a single 
parameter, which requires that the passed object has a property named 
label, which would have a string type. Note that our object has other prop-
erties, but the compiler only checks that it has at least the necessary prop-
erties, and their types match the required ones. In some cases, which we 
will discuss later, TS does not behave so leniently.

We can rewrite this example, this time using the interface to reflect the 
need for a string-type label property:

interface LabelledValue {
   label: string;
}
 
function printLabel(labelledObj: LabelledValue) {
   console.log(labelledObj.label);
}
 
let myObj = {size: 10, label: "Size 10 Object"};
printLabel(myObj);

The LabelledValue interface is the name that can now be used to set the 
requirement from the previous example. It still reflects the need for the 
object to have a string-type property named label. Note that it is not nec-
essary to explicitly state that the object that we pass to printLabel imple-
ments this interface, as it would have to be done in other languages. In 
TS, only the shape of the object matters. If the object that is passed to the 
function meets the listed requirements, then it is considered suitable.

It is worth noting that type checking does not require that the proper-
ties go in a certain order: it is only important that the necessary properties 
are present and have the appropriate type.



36    ◾    TypeScript for Beginners

Optional Properties
Not all interface properties may be required. Some exist only under cer-
tain conditions, or none at all. Such optional properties are often found, 
for example, when passing arguments to a function in the form of an 
object that specifies only a few properties.

interface SquareConfig {
    color?: string;
    width?: number;
}
 
function createSquare(config: SquareConfig): {color: 
string; area: number} {
   let newSquare = {color: "white", area: 100};
   if (config.color) {
      newSquare.color = config.color;
    }
    if (config.width) {
       newSquare.area = config.width * config.width;
    }
    return newSquare;
}
 
let mySquare = createSquare({color: "black"});

Interfaces with optional properties are written like normal ones, but each 
optional property is marked with the symbol ? at the end of the name.

The advantage of optional properties is that you can describe the prop-
erties that may be present, and at the same time prohibit the use of those 
properties that are not part of the interface. For example, if we made a 
mistake when entering the color name in createSquare, we would get an 
error message informing us about it:

interface SquareConfig {
    color?: string;
    width?: number;
}

function createSquare(config: SquareConfig): { color: 
string; area: number } {
   let newSquare = {color: "white", area: 100};



TypeScript    ◾    37

   if (config.color) {
      // Ошибка: Property ’collor’ does not exist on 
type ’SquareConfig’
      newSquare.color = config.collor;
   }
    if (config.width) {
       newSquare.area = config.width * config.width;
    }
    return newSquare;
}

let mySquare = createSquare({color: "black"});

Read-Only Properties
Some properties should only be modifiable when the object is created. You 
can specify this by adding readonly before its name:

interface Point {
   readonly x: number;
   readonly y: number;
}

You can create a Point object by assigning an object literal, but after the 
assignment, you can no longer change x and y.

let p1: Point = { x: 10, y: 20 };
p1.x = 5; // error!

TS has a ReadonlyArray<T> type, which is essentially an Array<T> type, 
from which all methods that modify it are removed, so you can be sure 
that such arrays will not change after creation:

let a: number[] = [1, 2, 3, 4];
let ro: ReadonlyArray<number> = a;
ro[0] = 12; // error!
ro.push(5); // error!
ro.length = 100; // error!
a = ro; // error!
</number>



38    ◾    TypeScript for Beginners

In the last line of the example, you can see that even assigning 
ReadonlyArray to a regular array is not allowed. However, this restriction 
can still be circumvented by using typecasting:

a = ro as number[];

The easiest way to remember when to use readonly and when to use const 
is to ask whether this feature is needed for a variable or for an object 
property. With variables, const is used, and with properties, readonly is 
used.

Checks for Extra Properties
In our first example of using interfaces, TS allowed us to pass {size: num-
ber; label: string;} where only {label: string;} was expected. We also learned 
about optional properties, and how they can be useful when passing argu-
ments to functions.

However, a mindless combination of these two features would allow 
you to shoot yourself in the foot just like in JS. For example, if you take the 
last example with createSquare:

interface SquareConfig {
   color?: string;
   width?: number;
}
 
function createSquare(config: SquareConfig): { color: 
string; area: number } {
   // ...
}
 
let mySquare = createSquare({ colour: "red", width: 
100 });

Note that the argument passed to createSquare is written as colour instead 
of color. In pure JS, such things do not give errors, but they also do not 
work as the developer would like.

We can say that this program is correct from the point of view of types, 
since the types of the width properties are compatible, there is no color, 
and the presence of an additional color property does not matter.



TypeScript    ◾    39

However, TS makes the assumption that there is an error in this piece 
of code. Object literals are processed by it in a special way and are checked 
for the presence of unnecessary properties. This check is done when liter-
als are either assigned to other variables or passed as arguments. If there 
are any properties in the literal that are not present in the target type, this 
will be considered an error.

// error: ’colour’ not expected in type ’SquareConfig’
let mySquare = createSquare({ colour: "red", width: 
100 });

It is very easy to bypass such a check. The easiest way is to use typecasting:

let mySquare = createSquare({ width: 100, opacity: 0.5 
} as SquareConfig);

If you are sure that the object can have additional properties that will be 
used in some special way, then there is an even better way – to add a string 
index. If SquareConfig objects can have color and width properties, as well 
as any number of other properties, then the interface can be described as 
follows:

interface SquareConfig {
    color?: string;
    width?: number;
     [propName: string]: any;
}

We’ll discuss indexes later, but for now just note that in this example, 
SquareConfig can have any number of properties, and if it’s not color or 
width, then their type doesn’t matter.

The last way to bypass the check for redundant properties – which may 
seem a little unexpected – is to assign an object to another variable. Since 
squareOptions will not pass the check for redundant properties, the com-
piler will not throw an error.

let squareOptions = {colour: "red", width: 100};
let mySquare = createSquare(squareOptions);



40    ◾    TypeScript for Beginners

Don’t forget that in simple code like the one above, you probably 
shouldn’t try to bypass this check. For more complex object literals that 
have methods, or that have state, you may need to use this technique, 
but most compiler messages related to checking for redundant proper-
ties indicate real errors. This means that when you encounter problems 
that such a check generates (for example, when passing an object with 
arguments to a function), you may need to change the type declarations. 
In this case, if passing an object that can have both the color and color 
properties is acceptable, you need to correct the SquareConfig definition 
to reflect this.

Functional Types
Interfaces can describe a wide range of “forms” that JS objects take. In 
addition to describing objects with properties, interfaces can also describe 
function types.

In order to describe a function using an interface, a call signature is 
added to it. Such a signature looks like a function description that speci-
fies only the argument list and the return type. Each parameter in the list 
must have both a name and a type.

interface SearchFunc {
    (source: string, subString: string): boolean;
}

Once defined, such an interface can be used in the same way as other 
interfaces. Now, we will show you how to create a variable of a functional 
type and assign it a function.

let mySearch: SearchFunc;
mySearch = function(source: string, subString: string) 
{
    let result = source.search(subString);
    if (result == -1) {
        return false;
    }
    else {
        return true;
    }
}



TypeScript    ◾    41

The parameter names do not have to match in order for the function to 
pass type-matching. We, for example, could write the previous example 
like this:

let mySearch: SearchFunc;
mySearch = function(src: string, sub: string): boolean 
{
   let result = src.search(sub);
   if (result == -1) {
       return false;
   }
   else {
       return true;
   }
}

The function parameters are checked one after the other, and the param-
eter types that are in the corresponding positions are compared in pairs. 
If you don’t want to specify types for arguments, then TS can infer types 
from the context based on the fact that the function is assigned to a vari-
able whose type is SearchFunc. In the following example, the type of the 
function’s return value is also output: this is done based on the values it 
returns (false and true). If the function returned numbers or strings, the 
compiler would warn during type checking that the type of the returned 
value does not match the type specified in the SearchFunc interface.

let mySearch: SearchFunc;
mySearch = function(src, sub) {
    let result = src.search(sub);
    if (result == -1) {
       return false;
    }
    else {
       return true;
    }
}

Indexed Types
In the same way that interfaces are used to describe functions, you can 
describe types so that you can use the index operator with them – for 



42    ◾    TypeScript for Beginners

example, like this a[10] or ageMap [“daniel”]. Indexed types have an index 
signature that describes the types that can be used to index an object, as 
well as the types of values that this operation returns. Here is an example:

interface StringArray {
    [index: number]: string;
}
 
let myArray: StringArray;
myArray = ["Bob", "Josh"];
 
let myStr: string = myArray[0];

Here we have a stringArray interface that has an index signature. This 
signature says that when stringArray is indexed by a number, a string is 
returned.

There are only two types of supported index signatures: with strings 
and with numbers as an argument. An object can support both types, but 
the type of value returned by a numeric index must be a subtype of the 
one returned by a string index. This is because when an index operation 
is applied to an object, JS first converts the number passed as an index to 
a string. That is, using the index 100 (number) is the same as using “100” 
(string), so the types of both indexes must be consistent.

class Animal {
name: string;
}
class Dog extends Animal {
breed: string;
}
/ / Error: indexing with a string can return a Dog 
object!
interface NotOkay {
[x: number]: Animal;
[x: string]: Dog;
}

In addition to being a powerful way to describe dictionaries, string indexes 
require that the types of all properties match the type that the index opera-
tion returns. This is because obj.property is also available as obj[property]. 



TypeScript    ◾    43

In the following example, the name type does not match the string index 
type, and the compiler throws an error:

interface NumberDictionary {
    [index: string]: number;
    length: number;    // все хорошо, length — число
    name: string;        // ошибка, the type of ’name’ 
is not a subtype of the indexer
}

In addition, the index signature can be made read-only to prevent assign-
ment to indexes:

interface ReadonlyStringArray {
    readonly [index: number]: string;
}
let myArray: ReadonlyStringArray = ["Alice", "Bob"];
myArray[2] = "Mallory"; // error!

You can’t set myArray[2] because the index signature is read-only.

INTEGRATED DEVELOPMENT ENVIRONMENTS
An integrated development environment, or simply an IDE – is a tool used 
to develop applications in a simple, fast, and reliable way.

In this section, we’ll take a look at working with the TS environment so 
that you can edit, compile, run, and debug your code written in TS. TS was 
released as an open source project and includes both a Windows variant 
and a Node variant. This means that the compiler will run on Windows, 
Linux, macOS, and any other operating system that supports Node. In 
Windows environments, you can install Visual Studio, which will register 
tsc.exe (TS compiler) in our catalog c:\Program Files, or you can use Node. 
In Linux and macOS environments, we will need to use Node.

Node-Based Compilation

The simplest TS development environment consists of a simple text editor 
and a Node-based TS compiler. Go to the Node website and follow the 
instructions for installing Node on the operating system of your choice. 
Once Node is installed, you can install TS by simply typing:

npm install -g typescript



44    ◾    TypeScript for Beginners

This command calls the Node Package Manager (npm) to install TS as a 
global module (option-g), which will make it available regardless of which 
directory we are currently in. After installing TS, we can display the cur-
rent version of the compiler by typing the following:

tsc –v

Now let’s create a TS file named hello.ts with the following content:

console.log('hello TypeScript');

From the command line, we can use TS to compile this file into a JS file by 
running the following command:

tsc hello.ts

As soon as the TS compiler finishes its work, it will generate a hello file.js in 
the current directory. We can run this file using Node by typing:

node hello.js

After that, the console will output:

hello TypeScript

Creating a tsconfig.json File

The TS compiler uses the tsconfig file.json in the root of the project direc-
tory to specify any global TS project parameters and compiler parameters. 
This means that instead of compiling our TS files one by one (specifying 
each file on the command line), we can simply take the tsc from the root 
directory of the project and TS will recursively find and compile all TS files 
in the root directory and in all subdirectories. The tsconfig.json file that 
TS needs for this can be created from the command line by simply typing:

tsc –init

The result of this command is the main tsconfig.json file:

{
   "compilerOptions": {
 "target": "es5",
 "module": "commonjs",



TypeScript    ◾    45

 "strict": true,
 "esModuleInterop": true
  }
  }

This is a simple JSON file with a single CompilerOptions property that 
defines the compilation parameters for the project. The target property 
specifies the preferred JS output to generate, and it can be either ES3, ES5, 
ES6, ES2016, ES2017, or ESNext. The strict parameter is a flag that includes 
all parameters of strict type checking.

It is worth mentioning that TS allows you to use multiple tsconfig files.
json in the catalog structure. This allows different subdirectories to use 
different compiler parameters.

Using our tsconfig.json file, we can compile our application by simply 
typing:

tsc

This command will call the TS compiler using the tsconfig.json file we cre-
ated and generate the file hello.js. Virtually any TS source file with the 
extension .ts will generate a JS file with the .js extension.

Now, we have successfully created a simple TS development environ-
ment based on Node, with a simple text editor and command line access.



https://taylorandfrancis.com


47DOI: 10.1201/9781003203728-2

C h a p t e r  2

Key Concepts of TS

Traditional JavaScript focuses on functions and prototype-based inheri-
tance to develop reusable components, but this approach is quite inconve-
nient compared to the usual object-oriented programming, where classes 
inherit functionality and objects are built from these classes. Starting with 
ECMAScript 2015, also known as ECMAScript 6, JavaScript programmers 
will be able to create applications using this class-based object-oriented 
approach. In TypeScript (TS), you can use this approach now, and compile 
code in JavaScript that will work on the bulk of browsers and platforms, 
without waiting for the next version of JavaScript.

CLASSES
Let’s look at a simple example of working with classes:

class Sampler {
   greeting: string;
    constructor(message: string) {
        this.greeting = message;
    }
    greet() {
        return "Hello, " + this.greeting;
    }
}
 
let sampler = new Sampler("world");

https://doi.org/10.1201/9781003203728-2


48    ◾    TypeScript for Beginners

The syntax should be familiar if you’ve already programmed in C# or 
Java. We have declared a new Greeter class. This class has three members: 
the greeting property, the constructor, and the greet method.

You’ve noticed that when we access one of the class fields, we add this 
before the field name. It means that we are accessing a member of the 
class.

In the last line, we create an instance of the Greeter class using new. It 
calls the constructor that we defined earlier, creates a new object, and runs 
the constructor to initialize it.

Inheritance

TS uses the usual approaches of object-oriented programming. Of course, 
one of the most fundamental approaches in class-based programming is 
to create new classes using inheritance.

Inheritance is another paradigm that is one of the cornerstones of 
object-oriented programming. Inheritance means that an object uses 
another object as its base type, thereby inheriting all the characteristics of 
the base object, including all the properties and functions. Both interfaces 
and classes can use inheritance. The interface or class that inherits from 
it is known as the base interface or base class, and the interface or class 
that inherits from it is known as the derived interface or derived class. TS 
implements inheritance using the extends keyword.

Let’s look at the following example:

class Animal {
   name: string;
   constructor(theName: string) { this.name = theName; 
}
   move(distanceInMeters: number = 0) {
        console.log('${this.name} moved 
${distanceInMeters}m.');
   }
}
 
class Frog extends Animal {
   constructor(name: string) { super(name); }
   move(distanceInMeters = 5) {
        console.log("Jumping...");



Key Concepts of TS    ◾    49

        super.move(distanceInMeters);
    }
}
 
class Horse extends Animal {
   constructor(name: string) { super(name); }
   move(distanceInMeters = 45) {
        console.log("Galloping...");
        super.move(distanceInMeters);
    }
}
 
let jack = new Frog("Froggy the Traveller");
let mrhorse: Animal = new Horse("MrHorse");
 
jack.move();
mrhorse.move(34);

This example shows the many inheritance features of TS, the same as in 
other languages. Here we see the extends keyword used to create a sub-
class. The Horse and Frog classes are based on the Animal class and they 
get access to its features.

The example shows how to override the methods of the base class 
using the methods that are specified in the subclass. The Frog and Horse 
classes create a move method that overrides the move method from the 
Animal class, giving it functionality specific to each of the classes. Note 
that although nick is declared as Animal, its value is Horse, so when 
nick.move(34) is called, the overridden method of the Horse class will 
be called.

Derived classes containing constructor functions must call super (), 
which will execute the constructor function of the base class.

Interface Inheritance
The following code can be an example of interface inheritance:

interface IBase {
   id: number | undefined;
 }

interface IDerivedFromBase extends IBase {



50    ◾    TypeScript for Beginners

   name: string | undefined;
 }

class InterfaceInheritanceClass implements 
IDerivedFromBase {
   id: number | undefined;
   name: string | undefined;
 }

First, we have an interface called IBase, which defines the id prop-
erty of the number or undefined type. Our second interface definition, 
IDerivedFromBase, inherits (extends) from IBase, and therefore auto-
matically includes the id property. The IDerivedFromBase interface then 
defines a name property of the string or undefined type.

Since the IDerivedFromBase interface inherits from IBase, it actu-
ally has two properties – id and name. Next, we have the defini-
tion of the InterfaceInheritanceClass class, which implements the 
IDerivedFromBase interface. Therefore, this class must define both the id 
and the name property in order to successfully implement all the proper-
ties of the IDerivedFromBase interface. Although we only have the prop-
erties shown in this example, the same rules apply for functions.

Class Inheritance
Classes can also use inheritance, just like interfaces. Using our IBase and 
IDerivedFromBase interface definitions, the code below shows an exam-
ple of class inheritance:

class BaseClass implements IBase {
   id: number | undefined;
 }
class DerivedFromBaseClass
 extends BaseClass
 implements IDerivedFromBase {
   name: string | undefined; 
}

The first class, BaseClass, implements the IBase interface and as such 
is only required to define an id property, such as number or undefined. 
The second class, DerivedFromBaseClass, not only inherits from the 
BaseClass class (using the extends keyword) but also implements the 



Key Concepts of TS    ◾    51

IDerivedFromBase interface. Since BaseClass already defines the id prop-
erty required in the IDerivedFromBase interface, the only other property 
that the DerivedFromBaseClass class must implement is the name prop-
erty. Therefore, we need to include the definition of only this property in 
the DerivedFromBaseClass class.

TS does not support the concept of multiple inheritance. Multiple 
inheritance means that a single class can be derived from multiple base 
classes. TS supports only single inheritance, and therefore any class can 
have only one base class.

However, a class can implement many interfaces:

interface IFirstInterface {
   id : number | undefined;
 }

interface ISecondInterface {
   name: string | undefined;
 }

class MultipleInterfaces
 implements IFirstInterface, ISecondInterface {
   id: number | undefined;
   name: string | undefined;
 }

Here we have defined two interfaces named ifirstinterface and 
ISecondInterface. This is followed by a class named MultipleInterfaces, 
which implements both interfaces. This means that the MultipleInterfaces 
class must implement the id property to satisfy the IFirstInterface inter-
face, and the name property to satisfy the IFirstInterface interface.

Access Modifiers

Access modifiers allow you to hide the state of an object from external 
access and control access to this state. TS has three modifiers: public, pro-
tected, and private.

Public by Default
In our examples, we were able to freely access class members declared in 
all classes of the program. If you are familiar with classes in other lan-
guages, you may have noticed that in the examples above, we did not use 
the word public to change the visibility of a class member. For example, 



52    ◾    TypeScript for Beginners

C# requires each member to be explicitly marked public for visibility. In 
TS, however, each class member will be public by default.

But we can mark the members of the class public explicitly. The Animal 
class from the previous section will look like this:

class Animal {
    public name: string;
    public constructor(theName: string) { this.name = 
theName; }
    public move(distanceInMeters: number) {
        console.log(`${this.name} moved 
${distanceInMeters}m.`);
    }
}

Private Modifier
When a class member is marked with the private modifier, it cannot be 
accessed outside of that class. For example:

class Animal {
   private name: string;
   constructor(theName: string) { this.name = theName; 
}
}
 
new Animal("Cat").name; // erroe\: ’name’ is private;

TS is a structured type system. When we compare two different types, 
regardless of where and how they are described and implemented, if the 
types of all their members are compatible, it can be argued that the types 
themselves are compatible. However, when comparing types with the pri-
vate access modifier, this happens differently. Two types will be consid-
ered compatible if both members have the private modifier from the same 
declaration. This also applies to protected members.

Let’s look at an example to understand how it works in practice:

class Animal {
   private name: string;
   constructor(theName: string) { this.name = theName; 
}



Key Concepts of TS    ◾    53

}
 
class Cat extends Animal {
     constructor() { super("Cat"); }
}
 
class Employee {
   private name: string;
   constructor(theName: string) { this.name = theName; 
}
}
 
let animal = new Animal("Goat");
let cat = new cat();
let employee = new Employee("Jack");
 
animal = cat;
animal = employee; // error: ’Animal’ and ’Employee’ 
are not compatible

In this example, we have the classes Animal and Cat, where Cat is a sub-
class of Animal. We also have a new Employee class that looks identical 
to Animal. We create instances of these classes and try to access each one 
to see what happens. Since the private part of Animal and Cat is declared 
in the same declaration, they are compatible. However, this does not apply 
to Employee. When we try to assign Employee to Animal, we get an error: 
these types are not compatible. Even though Employee has a private mem-
ber named name, this is not the member we declared in Animal.

Protected Modifier
The protected modifier acts similarly to private, except that members 
declared by protected can be accessed in subclasses. For example:

class Person {
   protected name: string;
   constructor(name: string) { this.name = name; }
}
class Employee extends Person {
   private department: string;

   constructor(name: string, department: string) {
       super(name);



54    ◾    TypeScript for Beginners

       this.department = department;
   }
    public getElevatorPitch() {
       return 'Hello, my name is ${this.name} and I 
work in ${this.department}.';
    }
}
let howard = new Employee("Howard", "Sales");
console.log(howard.getElevatorPitch());
console.log(howard.name); // error

Note that we can’t use the name member outside of the Person class, but 
we can use it inside the Employee subclass method, because Employee 
comes from Person.

The constructor can also have the protected modifier. This means that 
a class cannot be created outside of the class that contains it, but it can be 
inherited. For example:

class Person {
     protected name: string;
     protected constructor(theName: string) { this.
name = theName; }
}
 
// Employee can extend Person
class Employee extends Person {
   private department: string;
 
    constructor(name: string, department: string) {
        super(name);
        this.department = department;
    }
 
    public getElevatorPitch() {
        return `Hello, my name is ${this.name} and I 
work in ${this.department}.`;
    }
}
 
let howard = new Employee("Howard", "Sales");
let john = new Person("John"); // error: The ’Person’ 
constructor is protected



Key Concepts of TS    ◾    55

Readonly Modifier
You can make properties read-only by using the readonly keyword. Readonly 
properties must be initialized when they are declared or in the constructor.

Class Octopus {
    readonly name: string;
    readonly numberOfLegs: number = 8;
    constructor (theName: string) {
        this.name = theName;
    }
}
let dad = new Octopus("Man with the 8 strong legs");
dad.name = "Man with the 3-piece suit"; // error! name 
is readonly.

Type Iterator Modifier
By using the optional + sign along with the type modifiers, we can cre-
ate more explicit and readable type declarations. We can also use the - 
(minus) sign to remove optional declarations from the? properties.

For example: we have an interface; we can use type iterator modifiers to 
make all its properties available to readonly.

interface ICar {
  name: string;
  age: number;
}
type ReadonlyCar = {
  readonly [K in keyof ICar]: ICar[K];
};

This type can be useful, for example, for the state of the Redux application 
because the state must be immutable.

We should not be able to change any of its properties once the object has 
been created. Type iterator modifiers have become a great addition to the 
language, as they make it easy to extend existing types and apply massive 
changes to all their properties.

Now, if we declare two models of the car machine: the first object is 
mutable, the other is readonly; then try to change their data, we will notice 
that in the second case we will have an error.

const car: ICar = {
  name: "Mercedes",



56    ◾    TypeScript for Beginners

  age: 2
};

const readOnlyCar: ReadonlyCar = {
  name: "BMW",
  age: 5
};

car.age = 8;
readOnlyCar.age = 10; // Cannot assign to ’age’ 
because it is a read-only property

In the case of ReadonlyCar.age, TS tells us that age is readonly – Cannot 
assign to ‘age’ because it is a read-only property.

And this is normal, because we have specified that all its properties are 
readonly. The readonly status is not the only thing we can change in the 
type iterator modifiers.

We can specify that all properties are optional via?.

type ReadonlyCar = {
  readonly [K in keyof ICar]?: ICar[K];
};

Also, we can specify that all properties are strings, or make each property 
as a union of their original type and string through a vertical bar |. There 
are many options.

type ReadonlyCar = {
  readonly [K in keyof ICar]?: ICar[K] | string;
};

However, with the syntax readonly [K in keyof ICar]: ICar[K]; we can only 
add new elements to existing types. We can add the flag readonly or? sign.

If the original type has a property that is optional, for example:

interface ICar {
  name: string;
  age: number;
  color?: string;
}

We can remove the flag not only with? sign. Starting with TS 2.8, it 
became possible to add a minus sign (-) before the character that we want 
to remove.



Key Concepts of TS    ◾    57

type ReadonlyCar = {
  readonly [K in keyof ICar]-?: ICar[K];
};

As soon as we added the minus sign, TS immediately started throwing an 
error in const ReadonlyCar. This is because we suddenly missed a required 
property in this new object. As soon as we add a new color field, the error 
disappears.

const readOnlyCar: ReadonlyCar = {
  name: "BMW",
  age: 5,
  color: "black"
};

Since we have the flexibility with the - sign to remove flags from our types, 
the + sign has also been added to this feature. We can say more clearly 
what we are adding and what we are removing.

type ReadonlyCar = {
  +readonly [K in keyof ICar]-?: ICar[K];
};

Now everyone is reading this type, and it became clearer that we take 
the original ICar interface, remove all optional modifiers -? and add the 
+readonly flag for all properties.

Type iterator modifiers are useful if:

•	 there is an interface that cannot be changed directly (for example, 
from the library);

•	 there is an interface that we want to continue using for some pur-
poses, and create a small variation of it (using modifiers) for use for 
other purposes;

•	 in both cases, the type iterator modifiers “follow” the form of the 
original interface; even if the original interface changes/is changed 
in the future, they will simply extend it according to the specified 
rules.



58    ◾    TypeScript for Beginners

Parameter Properties
In our last example, we declared the readonly member name and the con-
structor parameter theName in the Octopus class, and assigned theName 
to name. This is a very common practice. The parameter properties allow 
you to create and initialize members in one place. Here is a further refine-
ment of the previous Octopus class, using the parameter property:

class Octopus {
    readonly numberOfLegs: number = 8;
    constructor(readonly name: string) {
  }
}

Note how we removed theName and shortened the readonly name: string 
constructor parameter to create and initialize the name member. We com-
bined the declaration and assignment in one place.

Parameter properties are declared before a constructor parameter that 
has an availability modifier, readonly, or both. Using the private param-
eter property declares and initializes the private member; so do public, 
protected, and readonly.

Accessors (Getters/Setters)
TS supports getters and setters as a way to intercept accesses to object 
properties. This gives you more control over the moment you interact with 
the properties of objects.

Let’s rewrite a simple class using get and set. First, let’s write down an 
example without using getters and setters.

class Employee {
   fullName: string;
}
 
let employee = new Employee();
employee.fullName = "Bob Nylon";
if (employee.fullName) {
    console.log(employee.fullName);
}

Allowing fullName to be set directly is quite convenient, but it can lead to 
problems if someone wants to change the name at will.



Key Concepts of TS    ◾    59

In this version, we check whether the user has a secret password before 
allowing them to make changes. We do this by replacing direct access to 
fullName and using the setter set, which checks the password. In addi-
tion, we add the appropriate get so that the code works the same as in the 
previous example.

let passcode = "secret passcode";
 
class Employee {
   private _fullName: string;
 
    get fullName(): string {
        return this._fullName;
    }
 
    set fullName(newName: string) {
        if (passcode && passcode == "secret passcode") 
{
           this._fullName = newName;
        }
        else {
            console.log("Error: Unauthorized update of 
employee!");
        }
    }
}
 
let employee = new Employee();
employee.fullName = "Bob Nylon";
if (employee.fullName) {
    console.log(employee.fullName);
}

To make sure that our access method checks the password, we can modify 
it and see that if there is a mismatch, we get a message that we can’t modify 
the worker object.

Attention: accessors require the installation of code generation in the 
compiler according to the ECMAScript 5 standard or higher.

Static Properties
So far, we’ve only talked about class instance members, the ones that 
appear in an object when it’s initialized. But we can also create static class 



60    ◾    TypeScript for Beginners

members, those that are visible in the class without creating an instance. 
In this example, we use static, since origin is a common value for all 
objects. Each instance accesses this value by prefixing it with the class 
name. Similar to how we add this. to access instance members, the Grid is 
used to access static members.

class Grid {
     static origin = {x: 0, y: 0};
     calculateDistanceFromOrigin(point: {x: number; y: 
number;}) {
        let xDist = (point.x - Grid.origin.x);
        let yDist = (point.y - Grid.origin.y);
        return Math.sqrt(xDist * xDist + yDist * 
yDist) / this.scale;
    }
    constructor (public scale: number) { }
}

let grid1 = new Grid(1.0);  // 1x scale
let grid2 = new Grid(5.0);  // 5x scale

console.log(grid1.calculateDistanceFromOrigin({x: 10, 
y: 10}));
console.log(grid2.calculateDistanceFromOrigin({x: 10, 
y: 10}));

Abstract Classes

Abstract classes are base classes from which others inherit. Their instances 
cannot be created directly. Unlike an interface, an abstract class can con-
tain the implementation details of its members. The abstract keyword is 
used to define abstract classes, as well as abstract methods within such 
classes.

abstract class Animal {
    abstract makeSound(): void;
    move(): void {
        console.log("doing something...");
    }
}

Methods within an abstract class that are marked as abstract do not con-
tain an implementation and must be implemented in derived classes. 
Abstract methods have the same syntax as interface methods. Both 



Key Concepts of TS    ◾    61

define the signature of a method without describing its body. The abstract 
method description must contain the abstract keyword, and can also con-
tain access modifiers.

abstract class Department {
    constructor(public name: string) {
    }
    printName(): void {
       console.log("Department name: " + this.name);
    }
    abstract printMeeting(): void; //  must be 
implemented in a derived class
}

class AccountingDepartment extends Department {
   constructor() {
       super("Accounting and Auditing"); // 
constructors in derived classes must call 
super()
    }
    printMeeting(): void {
       console.log("The Accounting Department meets 
each Monday at 10am.");
    }
    generateReports(): void {
        console.log("Generating accounting 
reports...");
    }
}
let department: Department; // okaycreated a reference 
to an abstract class
department = new Department(); // error: cannot create 
an instance of an abstract class
department = new AccountingDepartment(); // okay, a 
non-abstract class was created and assigneddepartment.
printName();
department.printMeeting();
department.generateReports(); // error: method doesn’t 
exist on declared abstract type

Constructors

When you declare a class in TS, you are actually creating multiple declara-
tions at the same time. The first declaration is of the class instance type.



62    ◾    TypeScript for Beginners

class Greeter {
    greeting: string;
    constructor(message: string) {
        this.greeting = message;
    }
    greet() {
        return "Hello, " + this.greeting;
    }
}
let greeter: Greeter;
greeter = new Greeter("world");
console.log(greeter.greet());

In this case, when we say let greeter: Greeter, we use Greeter as the type of 
instances of the Greeter class. This is almost a habit of programmers from 
other object-oriented programming languages.

We also create another value, which is called a constructor function. 
This function is called when we create instances of the class using new. To 
see how this looks in practice, let’s look at the JavaScript code generated by 
the compiler from the example above:

let Greeter = (function () {
    function Greeter(message) {
       this.greeting = message;
    }
    Greeter.prototype.greet = function () {
        return "Hello, " + this.greeting;
    };
    return Greeter;
})();

let greeter;
greeter = new Greeter("world");
console.log(greeter.greet());

Here let Greeter is assigned a constructor function. When we specify new 
and run this function, we get an instance of the class. The constructor 
function also contains all the static members of the class. Another way to 
think about each class is: there is an instance part and a static part.

Let’s change the code a bit to show this difference:

class Greeter {
    static standardGreeting = "Hello, there";



Key Concepts of TS    ◾    63

    greeting: string;
    greet() {
        if (this.greeting) {
           return "Hello, " + this.greeting;
        }
        else {
            return Greeter.standardGreeting;
        }
    }
}
let greeter1: Greeter;
greeter1 = new Greeter();
console.log(greeter1.greet());

let greeterMaker: typeof Greeter = Greeter;
greeterMaker.standardGreeting = "Hey there!";

let greeter2: Greeter = new greeterMaker();
console.log(greeter2.greet());

In this example, greeter1 works similarly to the one above. We created an 
instance of the Greeter class and use the object. We have already seen this.

Then we use the class directly. Creating a new variable named greet-
erMaker. This variable will contain the class itself, or, in other words, the 
constructor function. Here we use typeof Greeter, it looks like “give me 
the type of the Greeter class itself,” not the instance. Or, more precisely, 
“give me an ID type called Greeter,” which is the type of the constructor 
function. This type will contain all the static members of Greeter, along 
with a constructor that creates instances of the Greeter class. We demon-
strated this by using new with greeterMaker, creating new instances of 
Greeter and calling them as before.

Using a Class as an Interface
As we discussed in the previous section, a class declaration creates two things: 
a type that describes instances of the class, and a constructor function. Since 
classes create types, we can use them in the same way as interfaces.

class Point {
    x: number;
    y: number;
}
 



64    ◾    TypeScript for Beginners

interface Point3d extends Point {
    z: number;
}
 
let point3d: Point3d = {x: 1, y: 2, z: 3};

FUNCTIONS
Functions are one of the fundamental foundations of any JavaScript appli-
cation. They are used to build abstraction levels, classes, information hiding, 
and modules. TS has classes, namespaces, and modules, but functions play 
a key role. The TS language slightly expands the capabilities of functions 
compared to JavaScript, making working with them even more convenient.

As in JavaScript, functions in TS can be either named or anonymous. 
This allows you to choose the most convenient approach for developing 
your application, whether it is building a list of functions in the API, or 
embedding one function in another.

Let’s recall how these two options look in JavaScript:

// Named function
function add (x, y) {
return x + y;
}
/ / Anonymous function
let myAdd = function(x, y) {return x+y; };

Just like in JavaScript, functions can access variables outside of their 
body. When this happens, the function is said to “capture” the variables. 
Although it is not the task of this article to explain how it works and what 
the pitfalls of this technique are, it is important to have a clear under-
standing of this mechanism in order to work with JavaScript and TS.

let z = 50;

function addToZ(x, y) {
   return x + y + z;
}

Types of Functions
Adding Types to a Function
Let’s add the types to the function from the previous simple examples:

function add(x: number, y: number): number {
   return x + y;



Key Concepts of TS    ◾    65

}
let myAdd = function(x: number, y: number): number 
{return x+y; };

You can add types to each parameter, as well as to the function itself, to 
specify the type of the return value. TS can infer the type of the return 
value itself by analyzing the return statements, so it is often possible not to 
specify it explicitly.

Now let’s describe the full type of this function:

let myAdd: (x: number, y: number)=>number =
    function(x: number, y: number): number {return 
x+y; };

A functional type consists of two parts: the argument types and the return 
type. The type of the return value is determined after =>. In the event that 
the function does not return any value, void must be specified.

Also in the example above, we changed the names of the parameters 
passed to the function. This is done for better code readability. You should 
always try to give “talking” or understandable names to the parameters. 
This will make it easier for others to read your code, as well as for you 
when you return to it after some time.

It is worth noting that only the parameters passed to the function 
and the return value determine its type. The captured variables are not 
included in the type description. Therefore, they are part of a certain “hid-
den state” of the function and are not included in the API.

Inferring Types
Experimenting with the following example, you can see that the TS com-
piler is able to deal with types if they are specified in only one-half of the 
expression:

// myAdd has the full function type
let myAdd = function(x: number, y: number): number { 
return  x + y; };
 // Parameters ’x’ and ’y’ — has "number" type
let myAdd: (baseValue:number, increment:number) => 
number =
    function(x, y) { return x + y; };



66    ◾    TypeScript for Beginners

This is called contextual typing – a type inference. This feature allows 
you to spend less effort on adding types to the program.

There are several places in TS where type inference is used to get infor-
mation about types without explicitly specifying it. For example, in this 
code

let x = 3;

The type of the variable x is output in number. This kind of inference 
occurs when initializing variables and members, assigning default values 
to parameters, and defining the type of the function’s return value.

In most cases, type inference is fairly straightforward. In the following 
sections, we will describe several subtleties of this process.

Best General Type
When inference is made from multiple expressions, their types are used to 
find the “best general type.” For example,

let x = [0, 1, null];

To output the type x in this case, you need to check the type of each ele-
ment in the array. In this case, there are two options for the array type: 
number and null. The algorithm for finding the best common type checks 
each candidate type, and selects the one that is compatible with all the 
others.

Since the best common type must be chosen from the types provided, 
there are cases where the types have a common structure for all, but none 
of them is the base for all the others. For example:

let zoo = [new Rhino(), new Elephant(), new Snake()];

Ideally, we would like the zoo type to be output as Animal[] (that is, an 
array of objects of the Animal – animal class). But, since there is not a 
single object in the array that has the Animal class, the compiler is not able 
to get such a result. To fix this, you will have to explicitly specify the type 
if no object has the base type for all the others:

let zoo: Animal[] = [new Rhino(), new Elephant(), new 
Snake()];



Key Concepts of TS    ◾    67

If the compiler cannot find the best common type, the output will be 
the type of an empty object, that is, {}. Since this type has no members, 
attempting to use any of its properties will result in an error. As a result 
of this inference, you can still use the object as if its type is unknown, 
and guarantee type safety in cases where the object type cannot be found 
implicitly.

Context Type
In some cases, type inference works in the “other direction” as well. 
This is called “context typing.” Contextual typing occurs when you can 
make a guess about the type of an expression based on its position. For 
example:

window.onmousedown = function(mouseEvent) {
    console.log(mouseEvent.buton); //<- Error
};

To find the type error in this example, the compiler first used the Window.
onmousedown function type to infer the type of the function expression 
from the right side of the assignment. After that, it was able to output 
the type of the MouseEvent parameter. If this function expression was 
located where its type could not be inferred from the context, the type 
of the MouseEvent parameter would be any, and the compiler would not 
throw an error.

If an expression whose type was inferred from the context contains an 
explicit type indication, the inferred context type is ignored. That is, if the 
previous example were written as:

window.onmousedown = function(MouseEvent: any) {
console. log(MouseEvent.buton); / / < - No error is 
shown now
};

The explicitly specified parameter type in the function expression will 
take precedence over the context type. For this reason, the compiler will 
not throw an error, since the context type is not applied.

Contextual typing is used in many cases. Typically, these are argu-
ments when calling functions, the right-hand side of an assignment, 
type checks, object members and array literals, and return statements. 



68    ◾    TypeScript for Beginners

Also, the context type is used as a candidate for the best general type. For 
example:

function createZoo(): Animal[] {
   return [new Rhino(), new Elephant(), new Snake()];
}

There are four candidates for the best overall type: Animal, Rhino, 
Elephant, and Snake. The algorithm for finding the best general type is 
able to choose Animal from them.

Anonymous Functions
JavaScript also has the concept of anonymous functions. These are func-
tions that are defined during the operation and do not specify a function 
name. Consider the JavaScript code below:

var addVar = function(a,b) {
   return a + b;
 }
var addVarResult = addVar(2,3); 
console.log("addVarResult:"" + addVarResult);

Here, we define a function that has no name and adds two values. Since 
the function has no name, it is known as an anonymous function. This 
anonymous function is then assigned to a variable named addVar. 
The  addVar variable can be called as a function with two parameters, 
and the return value will be the result of executing an anonymous func-
tion. The output of this code will be as follows:

addVarResult:5

Let’s now rewrite the previous anonymous JavaScript function in TS:

var addFunction = function(a:number, b:number) : 
number {
   return a + b;
 }
var addFunctionResult = addFunction(2,3); 
console.log('addFunctionResult : 
${addFunctionResult}');



Key Concepts of TS    ◾    69

Here, you can see that TS allows anonymous functions in the same way 
as JavaScript, but still allows standard type annotations. The result of this 
code is as follows:

addFunctionResult: 5

Type Compatibility

Type compatibility in TS is based on structural typing. Structural typing 
is a way to identify type relationships based solely on the composition of 
their members. This approach differs from nominative typing. Let’s look 
at the following code:

interface Named {
name: string;
}

class Person {
name: string;
}

let p: Named;
// Everything fits, since the structural type system
p = new Person is used();

In languages like C# and Java, where the nominative type system is used, 
similar code would lead to an error, since the Person class is not explicitly 
described as implementing the Named interface.

The TS structural type system was designed with the way JavaScript 
code is usually written in mind. Since JavaScript makes extensive use of 
anonymous objects, such as function expressions and object literals, it is 
much more natural to describe their relationships using a structural sys-
tem rather than a nominative one.

The TS type system allows for certain operations that cannot be said to 
be safe at compile time. When a type system has this property, it is said 
that it is not “reliable.” The places where TS allows unreliable behavior 
have been carefully considered, and in this chapter, we will explain where 
this happens and for what reason it was allowed.

The basic rule of the TS type system is that x is compatible with y if y 
has at least the same members as x. For example:

interface with the name {
name: string;
}



70    ◾    TypeScript for Beginners

let x: Named;
// the output type for y is {name: string; location: 
string;}
let y = {name: "Jannet", location: "Boston"};
x = y;

To understand whether y can be assigned to x, the compiler searches for 
the corresponding compatible property in y for each of the properties of x. 
In this case, the y variable must have a property named name of the string 
type. It is there, and assignment is allowed.

The same rule is used in the case of checking arguments when calling 
a function:

function greeting (n: By name) {
alert ("Hello," + n.name);
}
greet(y); / / OK

Note that y has an additional location property, but this does not result 
in an error. When checking for compatibility, only members of the target 
type (in this case, Named) are considered.

The comparison process is performed recursively, affecting the types of 
all members and sub-members.

Optional Parameters and Default Parameters
In TS, it is assumed that each function parameter is required. This does 
not mean that it cannot be passed null or undefined: it means that when 
the function is called, the compiler will check whether the user has set a 
value for each of its parameters. In addition, the compiler assumes that 
no parameters other than those specified will be passed. Simply put, the 
number of parameters passed must match the number of parameters that 
the function expects.

function buildName(firstName: string, lastName: 
string) {
return firstName + "" + lastName;
}

let result1 = buildName("Sam"); // error, too few 
parameters



Key Concepts of TS    ◾    71

let result2 = buildName("Sam", "Adams", "Sr."); // 
error, too many parameters
let result3 = buildName("Sam", "Adams"); // correct

In JavaScript, all parameters are optional, and users can skip them if nec-
essary. In such cases, the value of the missing parameters is assumed to 
be undefined. In TS, you can also achieve this: to do this, at the end of the 
parameter that you want to make optional,? is added. For example, we 
want to make lastName optional from the previous example:

function buildName(firstName: string, lastName?: 
string) {
    if (lastName)
       return firstName + " " + lastName;
    else
       return firstName;
}

let result1 = buildName("Sam");         // all is 
correct now
let result2 = buildName("Sam", "Adams", "Sr.");  // 
error, too many parameters
let result3 = buildName("Sam", "Adams");         // 
correct

All optional parameters must come after the required ones. If the first 
parameter (firstName) had to be made optional instead of lastName, then 
the order of the parameters in the function would have to be changed so 
that firstName would be the last.

TS also allows you to specify a value for a parameter that it will accept 
if the user skips it or passes undefined. These parameters are called default 
parameters, or simply default parameters. Let’s take the previous example 
and set the default value for lastName to “Smith.”

function buildName(firstName: string, lastName = 
"Smith") {
    return firstName + " " + lastName;
}
 
let result1 = buildName("Sam");                 // now 
all is correct, returns "Sam Smith"



72    ◾    TypeScript for Beginners

let result2 = buildName("Sam", undefined);     // also 
works and returns "Sam Smith"
let result3 = buildName("Sam", "Adams", "Sr.");  // 
error, too many parameters
let result4 = buildName("Sam", "Adams");         // 
correct

The default parameters that follow all the required parameters are consid-
ered optional. Just like the optional ones, you can skip them when calling 
the function. This means that the types of optional parameters and default 
parameters that are at the end will be compatible, so this function …

function buildName(firstName: string, lastName?: 
string) {
   // …
}

And this

function buildName(firstName: string, lastName = 
"Smith") {
   // …
}

will have the same type (firstName: string, lastName?: string) = > string. 
The default value for the lastName parameter in the function type descrip-
tion disappears, leaving only the fact that the last parameter is optional.

Unlike simple optional parameters, the default parameters do not 
have to be placed after the required parameters. If the default parame-
ter is followed by a mandatory parameter, you will have to explicitly pass 
undefined to set the default value. For example, the last example can be 
rewritten using only the default parameter for firstName:

function buildName(firstName = "Will", lastName: 
string) {
   return firstName + " " + lastName;
}
 
let result1 = buildName("Sam");                    // 
error, too few parameters



Key Concepts of TS    ◾    73

let result2 = buildName("Sam", "Adams", "Sr.");  // 
error, too many parameters
let result3 = buildName("Sam", "Adams");         // 
works and returns "Bob Adams"
let result4 = buildName(undefined, "Adams");     // 
works and returns "Will Adams"

Rest Parameters
Mandatory, optional, and default parameters have one thing in common – 
they describe one parameter at a time. In some cases, you need to work 
with several parameters, treating them as a group; and sometimes it is 
not known in advance how many parameters the function will take. In 
JavaScript, you can work with arguments directly using the arguments 
variable, which is available inside any function.

In TS, you can assemble arguments into a single variable:

function buildName(firstName: string, ...restOfName: 
string[]) {
   return firstName + " " + restOfName.join(" ");
}

let employeeName = buildName("Jonas", "Pitt", "Lucas", 
"Samuel");

Rest parameters can be understood as an unlimited number of optional 
parameters. When passing arguments for residual parameters, you can 
pass as many of them as you want; or you can pass nothing at all. The 
compiler will build an array from the passed arguments, assign it a name 
that is specified after the ellipsis (…), and make it available inside the 
function.

The ellipsis is also used when describing the type of function with 
residual parameters:

function buildName(firstName: string, ...restOfName: 
string[]) {
   return firstName + " " + restOfName.join(" ");
}
 
let buildNameFun: (fname: string, ...rest: string[]) 
=> string = buildName;



74    ◾    TypeScript for Beginners

this Keyword

Learning how to use this keyword correctly in JavaScript is something of a 
rite of passage for developers. Since TS is a superset of JavaScript, TS pro-
grammers also need to understand how to use this and how to notice when 
this is used incorrectly. Fortunately, TS allows you to detect the incorrect 
use of this with a few tricks.

As a rule, an object method needs access to the information stored in 
the object in order to perform any actions with it (in accordance with the 
purpose of the method).

For example, the code inside user. SayHi() may need the user name 
that is stored in the user object. To access information inside an object, a 
method can use the this keyword. The value of this is the “before the dot” 
object that was used to call the method.

let user = {
name: "John",
age: 30,

SayHi() {
// this is the " current object"
alert(this.name);
}

};

user.SayHi (); / / John

Here, during the execution of the user.SayHi () code, the value of this will 
be user (a reference to the user object).

Technically, it is also possible to access an object without the this key-
word by referring to it through an external variable (which stores a refer-
ence to this object):

let user = {
name: "John",
age: 30,

SayHi() {
alert(user.name); / / use the "user" variable instead 
of the "this" keyword"
}

};



Key Concepts of TS    ◾    75

But such code will be unreliable. If we decide to copy the reference to 
the user object to another variable, for example, admin = user, and over-
write the user variable with something else, then the wrong object will be 
accessed when calling the method from admin.

This is shown below:

let user = {
name: "John",
age: 30,
SayHi() {
alert( user.name ); / / will result in an error
}

};

let admin = user;
user = null; // reset the variable for clarity, now it 
does not store a reference to the object.

admin.SayHi (); / / Error! Inside SayHi (), the user 
is used, which no longer references the object!

If we use this.name instead of user.name inside the alert, then this code 
will work.

Keyword “this” and Arrow Functions
The keyword this is a variable that is set when the function is called. This 
is a very powerful and flexible feature of the language, but in return for its 
advantages, you always have to remember the context in which the func-
tion is executed. It’s easy to get confused here, especially when a function 
is returned as a result or passed as an argument.

Let’s look at an example:

let deck = {
    suits: ["hearts", "spades", "clubs", "diamonds"],
    cards: Array(52),
    createCardPicker: function() {
       return function() {
            let pickedCard = Math.floor(Math.random() 
* 52);
            let pickedSuit = Math.floor(pickedCard / 
13);
 



76    ◾    TypeScript for Beginners

            return {suit: this.suits[pickedSuit], 
card: pickedCard % 13};
       }
    }
}
 
let cardPicker = deck.createCardPicker();
let pickedCard = cardPicker();
 
alert("card: " + pickedCard.card + " of " + 
pickedCard.suit);

Note that createCardPicker is a function that returns a function. If we try 
to run this example, we will get an error instead of the expected message. 
This is because this, which is used in the function created by createCard-
Picker, points to the window and not to the deck object. All this is due to 
the fact that cardPicker() is called by itself. When using a similar syntax, 
when a function is called as a non-method, and at the very top level of the 
program, this will point to window. (Note: in strict mode, in such cases, 
this will have the value undefined, not window.)

You can fix this by making sure that the function is bound to the correct 
value of this before returning it. In this case, regardless of how it will be 
used in the future, it will still have access to the original deck object. To do 
this, you need to change the function, and use the syntax of the arrow func-
tion from the ECMAScript 6 standard. Arrow functions capture the value 
of this as it was at the time of its creation (and not at the time of the call):

let deck = {
    suits: ["hearts", "spades", "clubs", "diamonds"],
    cards: Array(52),
    createCardPicker: function() {
       //ATTENTION: the line below is an arrow 
function that captures the value of ’this’ from this 
place
       return () => {
            let pickedCard = Math.floor(Math.random() 
* 52);
            let pickedSuit = Math.floor(pickedCard / 
13);
            return {suit: this.suits[pickedSuit], 
card: pickedCard % 13};



Key Concepts of TS    ◾    77

       }
    }
}
 
let cardPicker = deck.createCardPicker();
let pickedCard = cardPicker();
 
alert("card: " + pickedCard.card + " of " + 
pickedCar8d.suit);

Even better, if you pass the –noImplicitThis flag to the compiler, TS will 
issue a warning if you make a similar error. It will indicate that this in the 
expression this. suits[pickedSuit] is of type any.

this Parameters
Unfortunately, the type of the expression this. suits[pickedSuit] is still any, 
since this is taken from a function expression inside an object literal. To 
fix this, you can explicitly specify this as a parameter. The this parameter 
is a “fake” parameter that comes first in the list of function parameters:

function f(this: void) {
// Ensure that 'this' cannot be used in this separate 
function
}

We will add several interfaces to the previous example: Card and Deck, to 
make the types more understandable and easy to reuse:

interface Card {
     suit: string;
     card: number;
}
interface Deck {
     suits: string[];
     cards: number[];
     createCardPicker(this: Deck): () => Card;
}
let deck: Deck = {
     suits: ["hearts", "spades", "clubs", "diamonds"],
     cards: Array(52),
     // ATTENTION: Now the function explicitly 
indicates that it should be called on an object of the 
Deck type



78    ◾    TypeScript for Beginners

     createCardPicker: function(this: Deck) {
        return () => {
            let pickedCard = Math.floor(Math.random() 
* 52);
            let pickedSuit = Math.floor(pickedCard / 
13);
            return {suit: this.suits[pickedSuit], 
card: pickedCard % 13};
        }
    }
}

let cardPicker = deck.createCardPicker();
let pickedCard = cardPicker();
alert("card: " + pickedCard.card + " of " + 
pickedCard.suit);

The compiler now knows that the createCardPicker function expects to be 
called on an object with the Deck type. This means that the type of this value 
is now Deck, not any, and the –noImplicitThis flag will not throw errors.

this Parameters for Callback Functions
You may also encounter this-related errors in callback functions when the 
functions are passed to a library that will later call them. Since the passed 
function will be called by the library as a normal function, this will have 
the value undefined. With some effort, you can use the this parameter to 
prevent such errors. First, the library developer must accompany the type 
of the callback function with the this parameter:

interface UIElement {
   addClickListener(onclick: (this: void, e: Event) => 
void): void;
}

this: void means that addClickListener assumes that the onclick function 
does not require this. Secondly, the code that is called must also be accom-
panied by the this parameter:

class Handler {
   info: string;
   onClickBad(this: Handler, e: Event) {



Key Concepts of TS    ◾    79

       // this is used here! The function will crash 
at runtime!
       this.info = e.message;
  };
}
let h = new Handler();
uiElement.addClickListener(h.onClickBad); // error!

When this is specified, it explicitly reflects the fact that onClickBad must 
be called on an instance of the Handler class. Now TS will detect that 
addClickListener requires a function with this: void. To fix this error, 
change the this type:

class Handler {
   info: string;
   onClickGood(this: void, e: Event) {
       // you can’t use the this variable here, 
because it has the void type!
       console.log('clicked!');
  }
}
let h = new Handler();
uiElement.addClickListener(h.onClickGood);

Since the onClickGood function specifies that the type of this is void, it 
can be passed to addClickListener. Of course, this also means that it can 
no longer be used in it this.info. But if you need both, you will have to use 
the arrow function:

class Handler {
   info: string;
   onClickGood = (e: Event) => {this.info = e.message}
}

This will work because arrow functions do not capture this from the con-
text in which they are executed, and they can be freely passed where a 
function with this: void is expected. The disadvantage of this solution 
is that for each Handler object, its own arrow function will be created. 
Methods, on the other hand, are created only once, are associated with the 
Handler prototype, and are common to all objects of this class.



80    ◾    TypeScript for Beginners

Overloads

TS supports function overloading, meaning we can define multiple ver-
sions of a function that will have the same name, but different parameter 
types or different number of parameters. For overloading, we first define 
all versions of the function that will not have any logic. And then we define 
a version of the function with a common signature that fits all the previ-
ously defined options. And in this general version, we already define the 
specific logic of the function.

For example, we need to combine two values, but if they represent 
strings, then just concatenate them, and if numbers, then add them. Then 
we could use the following function:

function add(x: string, y: string): string;
function add(x: number, y: number): number;
function add(x: any, y: any): any {
   return x + y;
}
 
let result1 = add(5, 7);
console.log(result1);   // 12
let result2 = add("5", "7");
console.log(result2);   // 57

The first version of the add function takes two strings and returns a string, 
the second version takes two numbers and returns a number. Common to 
them is a function that takes parameters of type any and returns a result 
of type any as well.

But if we applied the same function to boolean values:

let result3 = add(true, false);
console.log(result3);

Then we would get an error, since two versions of the function allow you 
to take either two strings or two numbers as parameters. And in this case, 
we would need to add another version of the function for boolean values:

function add(x: boolean, y: boolean): boolean;

JavaScript is by its very nature a very dynamic language. It is not uncom-
mon to find functions that return objects of different types depending on 
the arguments passed.



Key Concepts of TS    ◾    81

let suits = ["hearts", "spades", "clubs", "diamonds"];
 
function pickCard(x): any {
   // Working with object/array?
    // So, we were given a deck and we choose a card
    if (typeof x == "object") {
        let pickedCard = Math.floor(Math.random() * 
x.length);
        return pickedCard;
    }
    // Otherwise, we give you the opportunity to 
choose a card
    else if (typeof x == "number") {
        let pickedSuit = Math.floor(x / 13);
        return { suit: suits[pickedSuit], card: x % 13 
};
    }
}
 
let myDeck = [{ suit: "diamonds", card: 2 }, { suit: 
"spades", card: 10 }, { suit: "hearts", card: 4 }];
let pickedCard1 = myDeck[pickCard(myDeck)];
alert("card: " + pickedCard1.card + " of " + 
pickedCard1.suit);
 
let pickedCard2 = pickCard(15);
alert("card: " + pickedCard2.card + " of " + 
pickedCard2.suit);

In this example, the pickCard function returns two different things, 
depending on what was passed to it. If the user has passed an object that 
represents a deck of cards, the function will select one of the cards. If the 
user passes the card, the function will determine which card he chose. But 
how do you describe this behavior using a type system?

You need to specify several types for one function, creating a list of 
overloads. The compiler will use this list for checks when calling the func-
tion. Let’s create a list of overloads that describes what the pickCard func-
tion accepts and what it returns.

let suits = ["hearts", "spades", "clubs", "diamonds"];

function pickCard(x: {suit: string; card: number; }
[]): number;



82    ◾    TypeScript for Beginners

function pickCard(x: number): {suit: string; card: 
number; };
function pickCard(x): any {
   // Working with object/array?
    // So, we were given a deck and we choose a card
    if (typeof x == "object") {
        let pickedCard = Math.floor(Math.random() * 
x.length);
        return pickedCard;
    }
    // Otherwise, we give you the opportunity to 
choose a card
    else if (typeof x == "number") {
         let pickedSuit = Math.floor(x / 13);
         return { suit: suits[pickedSuit], card: x % 
13 };
    }
}

let myDeck = [{ suit: "diamonds", card: 2 }, { suit: 
"spades", card: 10 }, { suit: "hearts", card: 4 }];
let pickedCard1 = myDeck[pickCard(myDeck)];
alert("card: " + pickedCard1.card + " of " + 
pickedCard1.suit);

let pickedCard2 = pickCard(15);
alert("card: " + pickedCard2.card + " of " + 
pickedCard2.suit);

By changing the code in this way, we get the ability to call the pickCard 
function, performing a type check.

In order to select the correct type check, the compiler performs actions 
similar to those in JavaScript. It looks through the list of overloads, start-
ing with the first element, and matches the function parameters. If the 
parameters are appropriate, the compiler selects this overload as the cor-
rect one. Therefore, as a rule, function overloads are ordered from the 
most specific to the least specific.

Note that the code section function pickCard(x): any is not included in 
the list of overloads; there are only two elements in this list, one of which 
takes an object and the other a number. Calling pickCard with any other 
types of parameters will result in an error.



Key Concepts of TS    ◾    83

GENERICS
One of the most important aspects of software development is the creation 
of components with a well-designed structure and API. But an equally 
important part is the ability to reuse these components. Components that 
can work with different data sets provide developers with additional capa-
bilities when designing large and complex systems.

In languages such as Java or C#, one of the main ways to create reusable 
components is to use generics. Generalizations allow the component to 
work with different types of data, depending on the needs of developers.

Exploring the World of Generics

To begin with, we will create the first function that is traditional for 
acquaintance with generalizations: the identity function. Such a function 
returns exactly what was passed to it. You can think of it the same way as 
the echo command.

function identity(arg: number): number {
   return arg;
}

Of course, in TS, we can specify any so that the function can be used for 
any data type:

function identity(arg: any): any {
   return arg;
}

We can say that this function is a generalization, since it can work with 
any type of data. But in this case, we have absolutely no information about 
the type of the returned value. For example, we pass a number as an arg, 
but we don’t know anything about the specific type that the function will 
return, since it is any.

When using generalizations, we can explicitly specify the type of the 
argument and thus, within the framework of our example, determine the 
type of the return value. To do this, we need to use a special type variable 
that only works with data types, not their values:

function identity<t>(arg: T): T {
   return arg;
}
</t>



84    ◾    TypeScript for Beginners

We added a variable of type T to our function. This variable allows us to 
specify a specific type when using the function. In addition, we also speci-
fied the type of the return value. And now we know that the function will 
return the result with the same data type as the passed argument.

Now let’s see how you can use our function. There are two ways to do 
this. Consider the first one:

let numberOutput = identity<Number>(1);
let wrongOutput = identity<Number>("sdf"); / / 
Compilation error. Invalid data type for the argument
let stringOutput = identity<String>("String");

console. log(numberOutput); / / outputs "1"
console. log (stringOutput); / / outputs " String"

When calling the function in angle brackets < >, we explicitly specified the 
data type that the function will work with.

The second method is not to specify the data type in angle brackets, but 
simply pass the variable as an argument to the function. In this case, TS 
uses a mechanism called automatic type inference, according to the value 
passed as an argument.

let numberOutput = identity(1);
let stringOutput = identity ("String");

console. log(numberOutput); / / outputs " 1 "
console. log (stringOutput);/ / outputs " String"

The second method, on the one hand, makes the code shorter and easier 
to read, but on the other hand, it can lead to errors. After all, in this case, 
you can pass a value to the function that is not expected there, and this can 
lead to an error at runtime.

Working with Generalized Type Variables

When using generalizations, the compiler assumes that the generalized 
parameters passed to the function are used correctly. In fact, the compiler 
treats them as “any data type” or any.

Let’s look at the function from the previous section again:

function identity<t>(arg: T): T {
   return arg;
}
</t>



Key Concepts of TS    ◾    85

What if you need to output the length of the arg argument to the console 
every time the function is called? You may be tempted to write like this:

function loggingIdentity<t>(arg: T): T {
     console.log(arg.length);  // Error: T has no 
.length property
     return arg;
}
</t>

If you do this, the compiler will throw an error telling you what is being 
used the .length of the arg object, although it was never specified that the 
object has such a property. Earlier it was said that a type variable means 
absolutely any type, so a number that does not have a property could also 
be passed to the function .length.

Let’s assume that the function should actually work with arrays of T 
objects, and not with the T objects themselves directly. Since it will deal 
with arrays, they must have a property .length. You can describe it as if we 
are creating an array:

function loggingIdentity<t>(arg: T[]): T[] {
   console.log(arg.length);  // Array has .length, so 
there is no error
   return arg;
}
</t>

The loggingIdentity type is read as “a generalized loggingIdentity function 
that takes a type parameter T and an argument arg, which is an array of 
objects T, and returns an array of objects T.” If an array of numbers is 
passed to the function, the result will also be an array of numbers, since T 
will become number. This allows us to use the generalized type variable T 
as part of the type we are working with, rather than just as an entire type, 
which gives us more flexibility.

Alternatively, you can write this example in the following way:

function loggingIdentity<t>(arg: Array<t>): Array<t> {
   console.log(arg.length);  // Array has .length, so 
there is no error
   return arg;
}
</t></t></t>



86    ◾    TypeScript for Beginners

You may have already encountered this kind of type writing in other lan-
guages. In the next section, we’ll discuss how to create your own custom 
types like Array<T>.

Generalized Types

In the previous sections, we created a generalized identity function that 
worked with different types. In this section, we will discuss how to describe 
the type of such a function and how to create generalized interfaces.

Defining a generic function type is very similar to defining a type for 
a regular function. The only difference is that you first need to specify the 
type of parameters to be passed and the return value, just like when creat-
ing a generalized function:

function
 identity<t>(arg: T): T {
    return arg;
}

let myIdentity: <t>(arg: T) => T = identity;
</t></t>

A different name could be used for the standard parameter, but it is only 
important that the number of standard parameters and how they are used 
are consistent.

function identity<t>(arg: T): T {
   return arg;
}

let myIdentity: <U>(arg: U) => U = identity;
</t>

You can also write a generic type as a call signature on the type of an 
object literal:

function identity<t>(arg: T): T {
   return arg;
}

let myIdentity: {<t>(arg: T): T} = identity;
</t></t>



Key Concepts of TS    ◾    87

This brings us to the description of the first generalized interface. Let’s 
take the object literal from the previous example and turn it into an 
interface:

interface GenericIdentityFn {
   <t>(arg: T): T;
}

function identity<t>(arg: T): T {
   return arg;
}

let myIdentity: GenericIdentityFn = identity;
</t></t>

Moreover, we can specify a generic type for the entire interface, which will 
make this parameter available to all its methods. After that, we can use 
a generalized version of the interface, specifying a specific data type (for 
example, Dictionary<string> instead of Dictionary):

interface GenericIdentityFn<t> {
   (arg: T): T;
}

function identity<t>(arg: T): T {
   return arg;
}

let myIdentity: GenericIdentityFn<number> = identity;
</number></t></t>

Note that the example was transformed into something completely dif-
ferent. Instead of describing a generalized function, it is now an ordinary, 
non-generalized function that is part of a generalized type. When using 
GenericIdentityFn, you will now have to specify the appropriate type argu-
ment (in this case, number), thus fixing the types that the corresponding 
function will use. Understanding when a type parameter should be added 
to the call signature and when to the interface itself is useful when describ-
ing which aspects of the type are generalized.

In addition to generic interfaces, you can also create generic classes. 
Note that you cannot create generic enumerations and namespaces.



88    ◾    TypeScript for Beginners

Generalized Classes

Generalized classes have the same form as generalized interfaces. They 
have a list of typical parameters in angle brackets (< >) after the class name.

class GenericNumber<t> {
   zeroValue: T;
   add: (x: T, y: T) => T;
}

let myGenericNumber = new GenericNumber<number>();
myGenericNumber.zeroValue = 0;
myGenericNumber.add = function(x, y) { return x + y; 
};
</number></t>

This is a fairly literal use of the GenericNumber type (lit. a generalized 
number), but you can see that nothing prevents you from using other 
types with it, except number. For example, you can use the string type or 
more complex objects.

let stringNumeric = new GenericNumber<string>();
stringNumeric.zeroValue = "";
stringNumeric.add = function(x, y) { return x + y; };

alert(stringNumeric.add(stringNumeric.zeroValue, 
"test"));
</string>

Just as with interfaces, passing a type parameter to the class itself estab-
lishes that all its properties will work with the same type.

As mentioned in Chapter 2, a class has two types: the static part 
type and  the instance type. Generic types are such only in relation to 
the instance type, but not to the static part type. Therefore, static class 
members cannot use typical class parameters.

Limitations of Generalizations

As you remember from the previous examples, in some cases you need 
to create a generalized function that works with a certain set of types, for 
which you know what capabilities they have. In the example with loggin-
gIdentity, you needed to access the property .the length of the arg object, 
but the compiler couldn’t be sure that any type would have such a prop-
erty, so it warned about it.



Key Concepts of TS    ◾    89

function loggingIdentity<t>(arg: T): T {
   console.log(arg.length);  // Error: T has no 
.length property
   return arg;
}
</t>

Instead of working with any possible type, we would like to create a con-
straint so that the function works with all types that have a property 
.length. If a type has this property, it can be used, but it must have at least 
this property.

To implement this, we will create an interface that describes such a 
restriction. Creating an interface with a single property. length, and use it 
with the extend keyword to denote a constraint:

interface Lengthwise {
   length: number;
}

function loggingIdentity<t extends="" 
lengthwise="">(arg: T): T {
   console.log(arg.length);  // Now we know that the 
object has a property .length, so there is no error   
 return arg;
}
</t>

Since the generalized function now has a constraint, it will not be able to 
work with any type:

loggingIdentity(3); / / Error, the number has no 
.length property

Instead, it needs to pass values of those types that have all the necessary 
properties:

loggingIdentity({length: 10, value: 3});

Using Generic Parameters in Generalization Constraints
You can define a type parameter that will be limited to the type of another 
type parameter. For example, we want to get a property of an object by 



90    ◾    TypeScript for Beginners

its name. And we really don’t want to try to get a property that doesn’t 
actually exist. To do this, enter a restriction on the second parameter of 
the type.

For example:

function getProperty<T, K extends keyof T>(obj: T, 
key: K) {
 return obj[key];
} let x = { a: 1, b: 2, c: 3, d: 4 };

 console.log(getProperty(x, "a")); // okay
//console.log(getProperty(x, "m")); // error: Argument 
of type 'm' isn't assignable to 'a' | 'b' | 'c' | 'd'.

Using Class Types in Generalizations

When creating object factories in TS using generalizations, you must refer 
to class types in constructor functions. For example:

function
create <T>(C:
{  new():  T;
}):  T  {
                   return new c();
           }
           Class SomeClass {}
           var obj = create(SomeClass);
           console. log(obj.constructor.name);
           // shows SomeClass

The following example shows how to impose restrictions on the types of 
classes created using the class factory:

class
BeeKeeper
{
                    hasMask:  boolean = false;
                    }
                     class Zookeper  {
                               nametag: string = 
"tag";
                    }
                    class Animal  {



Key Concepts of TS    ◾    91

                          numlegs : number;
                   }
                    class Bee extends Animal  {
                                 keeper: BeeKeeper = 
new BeeKeeper();
                     }
                     class Lion extends Animal  {
                                keeper: ZooKeeper = 
new ZooKeeper();
                      }
                      function createInstance<TAnimal 
extends Animal>(c: new () => TAnimal): Tanimal
                              return new c();
                       }
                       console.
log(createInstance(Lion).keeper.nametag); shows "tag"
                       console.log(createInstance 
(Bee).keeper.hasMask);  // shows "false"

new Keyword
To create a new object in the generalization code, we need to specify that 
the generalized type T has a constructor. This means that instead of the 
type: T parameter, we need to specify type: {new(): T;}. For example, the 
following generalized interface will not work:

function UserFactory<T>(): T {
   return new T(); // compilation error
}

To make the interface work, use the word new:

UserFactory<T>function (type: { new (): T;}): T {
return a new type ();
}
class
user
{

constructor () {
console.log ("User object created");
}
}



92    ◾    TypeScript for Beginners

ENUMS
Enums allow us to define a set of named numeric constants and are 
defined using the enum keyword. Enumerations are subtypes of the prim-
itive number type.

enum Direction {
   Up = 1,
   Down,
   Left,
   Right
}

The enumeration body consists of zero or more elements. The enumera-
tion elements have a numeric value associated with the name, and can be 
either a constant or can be evaluated. An enumeration element is consid-
ered a constant if:

•	 if the value is not explicitly defined and the value of the previous 
member is constant. In this case, the value will be equal to the 
numeric value of the previous term plus 1. The exception is only the 
first element. If the value is not specified, it becomes 0;

•	 if the enumeration element is defined using a constant expression. 
Such expressions are a type of TS expression that can be evaluated at 
compile time.

An enumeration expression is constant if a numeric literal is:

•	 a reference to a previously defined constant element of an enu-
meration (it can be defined in various enumerations). If an element 
is defined in the same enumeration, it can be referenced using an 
unqualified name;

•	 the constant expression of the enumeration, taken in parentheses by;

•	 the unary operator +, -,~, applied to the constant expression of the 
enumeration;

•	 by a binary operator +, -, *, /, %, ≪, ≫, ⋙, &, |, ̂  with an enumeration 
constant expression as an operand. A constant enumeration expres-
sion evaluated in NaN or Infinity results in a compile-time error.



Key Concepts of TS    ◾    93

In all other cases, the enumeration member is considered evaluated and its 
value is evaluated at the time of program execution.

enum FileAccess {
// constant elements
None,
Read = 1 << 1,
Write = 1 << 2,
ReadWrite = Read | Write,
// evaluated elements
G = "123".length
}

Enums are valid objects that exist at runtime. One reason for this is the 
ability to support reverse mapping from enum values to enum names.

enum Enum {
    A
}
let a = Enum.A;
let nameOfA = Enum[Enum.A]; // "A"

compiled in:

var Enum;
(function (Enum) {
    Enum[Enum["A"] = 0] = "A";
})(Enum || (Enum = {}));
var a = Enum.A;
var nameOfA = Enum[Enum.A]; // "A"

In the generated code, the enumeration is compiled into an object that 
stores the forward (name -> value) and reverse (value -> name) mappings. 
References to enum elements are always executed as property accesses and 
are never embedded. In many cases, this is the right solution. However, 
sometimes the requirements are tougher. To avoid paying the cost of addi-
tional generated code and indirect access when accessing enumeration 
values, you can use constant enumerations. Constant enumerations are 
defined using the const modifier preceding the enum keyword.

Constant Enums
In order not to generate additional code and unnecessary references to 
access the values of the enumerations, you can use constant enumerations. 



94    ◾    TypeScript for Beginners

They are defined using the const keyword, which is placed before enum. 
Using constant enumerations increases the performance of the code, 
because instead of the enumeration element, the constant associated with 
it is used.

const enum
Directions
{
                    Up,
                     Down,
                      Left,
                      Right
                 }
                let directions = [Directions.Up,  
Directions.Down,  Directions.Left,  Directions.Right] 

Such enumerations should only have constant expressions, and during 
compilation, references to the properties of the enumeration object are 
replaced with values:

var Directions;
(function (Directions) {
    Directions[Directions["Up"] = 0] = "Up";
    Directions[Directions["Down"] = 1] = "Down";
    Directions[Directions["Left"] = 2] = "Left";
    Directions[Directions["Right"] = 3] = "Right";
})(Directions || (Directions = {}));

let directions = [0, 1, 2, 3]; //Only values here!!!

If we make this enumeration normal, that is, remove const, we get:

let directions = [Directions.Up, Directions.Down, 
Directions.Left, Directions.Right]

Let’s take look at another example:

Const enum Directions  {
        Up
        Down
        Right
        Left
}



Key Concepts of TS    ◾    95

function someFunc(op: Directions)  {
     switch (op)  ;
          case Directions.Up: 
           //  some action…
          break;
     case Directions.Down:  
     // some action…
     break;
    //
 }
}

Now, let’s see what the someFunc function will look like after compilation:

function
someFunc(op)
{
                         switch (op)  {
                                  case 0:
                                      break;
                                   case 1:
                                       break;
                    }
        }

As you can see, the corresponding constants were substituted instead of 
the enumeration elements.

Declare Enums
declare enum Enum  {
       A = 1,
       B,
        C = 2
}

Such enumerations are defined using the declare keyword. They are used 
to describe the form of existing enumerations.

The difference between such enumerations is that if an element in such 
an enumeration does not have an initializer, then it is considered evalu-
ated. In normal enumerations, the opposite is true.



96    ◾    TypeScript for Beginners

The compiler will not generate code for such enumerations. This can 
be useful when using third-party libraries (for example, jQuery, in which 
a certain object is defined (for example, $) when you need information 
about an object, but you don’t need to generate code.

SYMBOLS
ECMAScript 2015 introduced the symbol type – a primitive data type 
similar to number and string.

Values of the symbol type are created by calling the Symbol constructor.

let sym1 = Symbol();

let sym2 = Symbol("key"); // Optional string key

The symbols are unchangeable and unique.

let sym2 = Symbol("key");
let sym3 = Symbol ("key");

sym2 = = = sym3; / / false, symbols are unique

Like strings, symbols can be used as keys for object properties.

let sym = Symbol();

let obj = {
    [sym]: "value"
};

console.log(obj[sym]); // "value"

Symbols can be used together with evaluated properties to declare object 
properties and class members:

const getClassNameSymbol = Symbol();

class C {
    [getClassNameSymbol](){
       return "C";
    }
}
 



Key Concepts of TS    ◾    97

let c = new C();
let className = c[getClassNameSymbol](); // "C"

Predefined Characters
In addition to user-defined characters, there are predefined built-in char-
acters. Embedded characters are needed to reflect the internal behavior of 
the language.

List of predefined characters:

•	 Symbol.hasInstance: A method that determines whether the con-
structor object recognizes the passed object as an instance of this 
constructor. Called by the instanceof operator.

•	 Symbol.isConcatSpreadable: A boolean value that indicates 
whether the object should be decomposed into array elements when 
used with Array. prototype. concat.

•	 Symbol.iterator: A method that returns the default iterator for an 
object. Called by the for-of construct.

•	 Symbol.match: A method for regular expressions that matches a 
regular expression to a string. Called by the String.prototype.match 
method.

•	 Symbol.replace: A method for regular expressions that replaces 
matched substrings in a string. Called by the String.prototype.replace 
method.

•	 Symbol.search: A method for regular expressions that returns the 
position in the string where the match with the regular expression is 
located. Called by the String.prototype.search method.

•	 Symbol.species: A property that contains a function that serves as a 
constructor for inherited objects.

•	 Symbol.split: A method for regular expressions that splits a string 
by the positions of matches with a regular expression. Called by the 
String.prototype.split method.

•	 Symbol.toPrimitive: A method that turns an object into the cor-
responding primitive value. Called by the abstract ToPrimitive 
operation.



98    ◾    TypeScript for Beginners

•	 Symbol.toStringTag: A string value that is used to create a default 
string value that describes the object. Called by the built-in Object.
prototype.toString method.

•	 Symbol.unscopables: An object whose proper property names are 
the names of properties whose bindings are not included in the envi-
ronment created by the with construct for the corresponding objects.



99DOI: 10.1201/9781003203728-3

C h a p t e r  3

Modules and 
Namespaces

Modules are executed not in the global scope but in their own scope. This 
means that variables, functions, classes, etc. declared in the module are 
not visible outside the module, except when they are explicitly exported 
using one of the export forms. Also, to use a variable, function, class, 
interface, etc. exported from another module, you need to import them 
using one of the import forms.

WHAT IS NAMESPACE?
A namespace is a construct that is declared using the namespace keyword 
and is represented in the code by a regular JavaScript object.

namespace Identifier {}

The namespace mechanism is a solution to the problem of collisions in the 
global namespace, which has come down to our days from the time when 
the ECMAScript specification did not define such a thing as modules. In 
simple terms, namespaces are a combination of a regular global variable 
and an unnamed functional expression.

Constructs declared inside a namespace are broken down in an 
unnamed function expression. Constructs that are visible from the out-
side are written to the object that was referenced in the global variable 
passed as an argument. What to write to the global object, and what not, 

https://doi.org/10.1201/9781003203728-3


100    ◾    TypeScript for Beginners 

is indicated to the compiler using the export keyword, which will be dis-
cussed very soon.

// @info: Before compilation

namespace NamespaceIdentifier {
  class PrivateClassIdentifier {}
  export class PublicClassIdentifier {}
}

// @info: After compilation

var NamespaceIdentifier;

(function (NamespaceIdentifier) {
  class PrivateClassIdentifier {}
  class PublicClassIdentifier {}

  NamespaceIdentifier.PublicClassIdentifier = 
PublicClassIdentifier;
})(NamespaceIdentifier || (NamespaceIdentifier = {}));

It’s also worth adding that namespace is a global declaration. This literally 
means that a namespace declared as global does not need to be exported 
or imported and a reference to it is available anywhere in the program.

WHAT IS MODULE?
Modules in TypeScript are defined using the export/import keywords and 
represent a mechanism for defining relationships between modules. This 
mechanism is internal exclusively for TypeScript and has nothing to do 
with ES2015 modules. They are otherwise identical to the ES2015 mod-
ules, except for the default module definition (export default).

// declaration.ts file
export type T1 = {};

export class T2 {}
export class T3 {}

export interface IT4 {}
export function f1() {}

export const v1 = ’v1’;
export let v2 = ’v2’;
export var v3 = ’v3’;



Modules and Namespaces    ◾    101

// index.ts file

import {T2} from ’./declaration’;
import * as declarations from ’./declaration’;

In addition, you can even declare a namespace using the export keyword. 
This will limit its global scope and its use in other files will only be possible 
after explicit import.

// declaration.ts file

export namespace Bird {
  export class Raven {}
  export class Owl {}
}
// index.ts file

import { Bird } from ’./declaration’;

const birdAll = [Bird.Raven, Bird.Owl];

It should be noted that you should export a namespace only when it is 
declared in the body of another namespace, but you need to get to it from 
the program.

namespace NS1 {
  export namespace NS2 {
    export class T1 {}
  }
}

Export

Any declaration (by a variable, function, class, type alias, or interface) can 
be exported by adding the export keyword.

Validation.ts
export interface StringValidator {
   isAcceptable(s: string): boolean;
}

ZipCodeValidator.ts
export const numberRegexp = /^[0-9]+$/;
 
export class ZipCodeValidator implements 
StringValidator {



102    ◾    TypeScript for Beginners 

   isAcceptable(s: string) {
       return s.length === 5 && numberRegexp.test(s);
   }
}

Export Validation
Export definitions are useful when you need to rename the exported ele-
ments. Then, the above example can be rewritten as follows:

class ZipCodeValidator implements StringValidator {
    isAcceptable(s: string) {
        return s.length === 5 && numberRegexp.test(s);
    }
}
export { ZipCodeValidator };
export { ZipCodeValidator as mainValidator };

Reexport
Modules often extend other modules. At the same time, they themselves 
provide access to some of the functions of the source modules. Reexport 
does not perform a local import and does not create a local variable.

ParseIntBasedZipCodeValidator.ts
export class ParseIntBasedZipCodeValidator {
   isAcceptable(s: string) {
        return s.length === 5 && parseInt(s).
toString() === s;
    }
}

// Exports the original validator by renaming it
export {ZipCodeValidator as 
RegExpBasedZipCodeValidator} from "./
ZipCodeValidator";

When using a module as a wrapper over one or more other modules, it is 
possible to reexport all their export statements at once using the export * 
from “module” construct.

AllValidators.ts
export * from ". / StringValidator"; / / exports the 
’StringValidator’ interface
export * from "./LettersOnlyValidator"; / / exports 
the ’LettersOnlyValidator’ class



Modules and Namespaces    ◾    103

export * from "./ZipCodeValidator"; / / exports the 
’ZipCodeValidator’class

Import

Importing is almost as easy as exporting. To import an exported ad, use 
one of the import forms below:

Importing a Single Exported Item
import { ZipCodeValidator } from "./ZipCodeValidator";
let myValidator = new ZipCodeValidator();

the imported element can also be renamed

import { ZipCodeValidator as ZCV } from "./
ZipCodeValidator";
let myValidator = new ZCV();

Importing the Entire Module into a Single Variable, and 
Using It to Access the Exported Module Elements
import * as validator from "./ZipCodeValidator";
let myValidator = new validator.ZipCodeValidator();

Importing a Module for the Sake of “Side Effects”
Despite the fact that it is not recommended to do this, some modules set a 
certain global state that can be used by other modules. These modules may 
not have exported elements, or the user does not need these elements. To 
import such modules, use the command:

import "./my-module.js";

Default Export
Each module can contain a default export. The default export is high-
lighted with the default keyword, and there can only be one such state-
ment in a module. To import an export, a separate form of the import 
statement is used by default.

The default export can be very useful. For example, a library like Jquery 
can export jQuery or $ by default, which we probably also import under 
the name $ or jQuery.

JQuery.d.ts
declare let $: JQuery;
export default $;



104    ◾    TypeScript for Beginners 

App.ts
import $from "JQuery";
$("button.continue").html ("Next Step…" ) ;

Classes and function definitions can be immediately designated as 
exported by default. Such classes and functions can be declared without 
specifying names.

ZipCodeValidator.ts
export default class ZipCodeValidator {
   static numberRegexp = /^[0-9]+$/;
   isAcceptable(s: string) {
        return s.length === 5 && ZipCodeValidator.
numberRegexp.test(s);
    }
}

Test.ts
import validator from "./ZipCodeValidator"; 
let myValidator = new validator();

StaticZipCodeValidator.ts
const numberRegexp = /^[0-9]+$/;

export default function (s: string) {
    return s.length === 5 && numberRegexp.test(s);
}

Test.ts
import validate from "./StaticZipCodeValidator";

let strings = ["Hello", "98052", "101"];

// Использование функции validate
strings.forEach(s => {
  console.log(`"${s}" ${validate(s)?  " matches" : " 
does not match"}`);
});

The default exported element can be a normal value:

OneTwoThree.ts
export default "123";
Log.ts
import num from "./OneTwoThree";



Modules and Namespaces    ◾    105

console.log(num); // "123"

export = import = require()

CommonJS and AMD have the concept of an exports object that contains 
all the module exports.

They also support replacing the exports object with a single user object. 
The default export is intended to replace this functionality. Both approaches, 
however, are incompatible. TypeScript supports the export = construct, 
which can be used to model the familiar way CommonJS and AMD work.

The export = construct defines a single object to export from the mod-
ule. This can be a class, interface, namespace, function, or enumeration.

To import a module exported with export =, the TypeScript-specific 
construct import let = require("module") must be used.

ZipCodeValidator.ts
let numberRegexp = /^[0-9]+$/;
class ZipCodeValidator {
    isAcceptable(s: string) {
        return s.length === 5 && numberRegexp.test(s);
    }
}
export = ZipCodeValidator;

Test.ts
import zip = require("./ZipCodeValidator");

// A few test cases
let strings = ["Hello", "4546", " 101"];

// Validators
let validator = new postcode();

// For each line shows did it every validator
strings.forEach(s => {
console.log(`"${ s }" - ${ validator.isAcceptable(s)?  
"matches" : "does not match" }`);
});

Generating Code for Modules

Depending on the module target specified at compile time, the compiler 
will generate the appropriate code for Node.js (CommonJS), require.js 
(AMD), (UMD), SystemJS, or native ECMAScript 2015 (ES6) modules. 



106    ◾    TypeScript for Beginners 

For more information about what the define, require, and register calls do 
in the generated code, see the documentation for each individual module.

This simple example shows how the names used during import and 
export are translated into the module loading code.

SimpleModule.ts
import m = require("mod");
export let t = m.something + 1;

AMD / RequireJS SimpleModule.js
define(["require", "exports", "./mod"], function 
(require, exports, mod_1) {
    exports.t = mod_1.something + 1;
});

CommonJS / Node SimpleModule.js
var mod_1 = require("./mod");
exports.t = mod_1.something + 1;
UMD SimpleModule.js
(function (factory) {
    if (typeof module === "object" && typeof module.
exports === "object") {
        var v = factory(require, exports); if (v !== 
undefined) module.exports = v;
    }
    else if (typeof define === "function" && define.
amd) {
        define(["require", "exports", "./mod"], 
factory);
    }
})(function (require, exports) {
    var mod_1 = require("./mod");
    exports.t = mod_1.something + 1;
});
SimpleModule.js System
System.register(["./mod"], function(exports_1) {
    var mod_1;
    var t;
    return {
        setters:[
                 function (mod_1_1) {
                 mod_1 = mod_1_1;
            }],



Modules and Namespaces    ◾    107

        execute: function() {
            exports_1("t", t = mod_1.something + 1);
        }
    }
});

Native ECMAScript 2015 SimpleModule.js Modules
import { something } from "./mod";
export var t = something + 1;

Below, we simplified the implementation of the validator from the previ-
ous example by reducing it to exporting a single named export from each 
module.

To compile successfully, you must specify the module target on the 
command line. For Node.js, used –module commonjs; for require.js —  
–module amd. For example:

tsc --module commonjs Test.ts

As a result of compilation, each module becomes separate. a js file. As with 
reference tags, the compiler will use the import statements to find and 
compile the dependent files.

Validation.ts
export interface StringValidator {
   isAcceptable(s: string): boolean;
}

LettersOnlyValidator.ts
import { StringValidator } from "./Validation";

const lettersRegexp = /^[A-Za-z]+$/;

export class LettersOnlyValidator implements 
StringValidator {
    isAcceptable(s: string) {
        return lettersRegexp.test(s);
    }
}

ZipCodeValidator.ts
import { StringValidator } from "./Validation";

const numberRegexp = /^[0-9]+$/;



108    ◾    TypeScript for Beginners 

export class ZipCodeValidator implements 
StringValidator {
    isAcceptable(s: string) {
        return s.length === 5 && numberRegexp.test(s);
    }
}

Test.ts
import { StringValidator } from "./Validation";
import { ZipCodeValidator } from "./ZipCodeValidator";
import { LettersOnlyValidator } from "./
LettersOnlyValidator";

// A few test cases
let strings = ["Hello", "98052", "101"];

// Validators
let validators: { [s: string]: StringValidator; } = 
{};
validators["ZIP code"] = new ZipCodeValidator();
validators["Letters only"] = new 
LettersOnlyValidator();

// For each row, shows whether it passed each 
validator
strings.forEach(s => {
    for (let name in validators) {
        console.log(`"${ s }" - ${ validators[name].
isAcceptable(s)?  "matches" : "does not match" } ${ 
name }`);
    }
});

Optional Module Loading and Its Other Advanced Scenarios

In some cases, you may need to load the module only under certain con-
ditions. In TypeScript, you can use the example below to apply this or 
another advanced module loading technique. This technique can be used 
to directly call module loaders without losing type safety.

The compiler determines for each module whether it is used in the gen-
erated JavaScript. If the module ID is only in the type descriptions and 
never in the expressions, then a call to require will not be generated for 
this module. This omission of unused links improves performance, and 
also allows you to organize the optional loading of modules.



Modules and Namespaces    ◾    109

The main idea of the example is that the import id = require(“…”) com-
mand gives access to the types that are disclosed by this module. As shown 
in the if block below, the module loader is called dynamically (using 
require). Thus, the optimization of skipping unused links is applied, which 
leads to loading the module only when it is needed. For this technique to 
work, it is necessary that the identifier defined using import is used only 
in the type description (i.e., never in a place in the code that will fall into 
the final JavaScript).

The typeof keyword is used to support type security. The typeof key-
word, when used in a type description, creates a value type (the module 
type in this case).

Dynamic Loading of Modules in Node.js
declare function require(moduleName: string): any;

import { ZipCodeValidator as Zip } from "./
ZipCodeValidator";

if (needZipValidation) {
    let ZipCodeValidator: typeof Zip = require("./
ZipCodeValidator");
    let validator = new ZipCodeValidator();
    if (validator.isAcceptable("...")) { /* ... */ }
}

Example: dynamic loading of modules in require.js

declare function require(moduleNames: string[], 
onLoad: (...args: any[]) => void): void;

import { ZipCodeValidator as Zip } from "./
ZipCodeValidator";

if (needZipValidation) {
    require(["./ZipCodeValidator"], (ZipCodeValidator: 
typeof Zip) => {
        let validator = new ZipCodeValidator();
        if (validator.isAcceptable("...")) { /* ... */ 
}
    });
}

Example: Dynamic loading of modules in System.js

declare const System: any;



110    ◾    TypeScript for Beginners 

import { ZipCodeValidator as Zip } from "./
ZipCodeValidator";

if (needZipValidation) {
    System.import("./ZipCodeValidator").
then((ZipCodeValidator: typeof Zip) => {
        var x = new ZipCodeValidator();
        if (x.isAcceptable("...")) { /* ... */ }
    });
}

Working with Other JavaScript Libraries

To describe a library that is not written in TypeScript, you must declare 
the API provided by that library.

We call declarations that do not define implementations “ambient.” 
They are usually set in .d.ts files. If you are familiar with C/C++, you can 
think of them as header files .h. Let’s look at some examples.

EXTERNAL MODULES
In Node.js, most tasks are performed by loading one or more modules. We 
could define each module in its own file .d.ts in top-level export declara-
tions, but it is much more convenient to put the definitions of all modules 
in one common .d.ts file. To do this, use a construct similar to external 
namespaces. It uses the module keyword and the quoted module name, 
which will be available for further import. For example:

node.d. ts (simplified excerpt)

declare module "url" {
    export interface Url {
        protocol?: string;
        hostname?: string;
        pathname?: string;
    }
    export function parse(urlStr: string, 
parseQueryString?, slashesDenoteHost?): Url;
}
declare module "path" {
    export function normalize(p: string): string;
    export function join(...paths: any[]): string;
    export var sep: string;
}



Modules and Namespaces    ◾    111

Now we can specify / / / <reference> node.d.ts and load modules using 
import url = require (“url”);.

/// <reference path="node.d.ts">
import * as URL from "url";
let myUrl = URL.parse("http://www.typescriptlang.
org");
</reference>

Abbreviated External Module Declaration Entry

If you don’t want to spend time writing ads before you start using the new 
module, you can use a shortened declaration.

declarations.d.ts
declare module "hot-new-module";

All imported elements of such a module will have the type any.

import x, {y} from "hot-new-module";
x(y);

Module Declarations Using Wildcard Characters

Some module loaders, such as SystemJS and AMD, allow you to import 
content other than JavaScript. In such cases, a prefix or suffix is usually 
used to denote the special loading semantics. Module declarations using 
wildcard characters can be used to organize these types of downloads.

declare module "*!text" {
    const content: string;
    export default content;
}
// Некоторые делают это иначе
declare module "json!*" {
    const value: any;
    export default value;
}

You can now import elements that match"*! text " or " json!*".

import fileContent from "./xyz.txt!text";
import data from "json!http://example.com/data.json";
console.log(data, fileContent);

http://www.typescriptlang.org
http://www.typescriptlang.org
http://example.com


112    ◾    TypeScript for Beginners 

UMD MODULES
Some libraries are designed to be used with many module loaders or 
no loaders at all (global variables). They are called UMD or Isomorphic 
modules. You can connect such libraries either by importing them or as a 
global variable. For example:

math-lib.d.ts
export const isPrime(x: number): boolean;
export as namespace mathLib;

You can connect this library inside the module by importing it:

import {isPrime} from "math-lib";
isPrime(2);
mathLib.isPrime(2); // Error: unable to use the global 
definition inside the module

You can also connect this library as a global variable, but this can only 
be done inside the script. (A script is a file without import and export 
commands).

mathLib.isPrime(2);

STRUCTURING MODULES
Export as Close to the Top Level as Possible

The less problems the module users have with using the exported elements, 
the better. Adding nesting levels makes the module more cumbersome, so 
you need to think carefully about its structure.

Exporting from a namespace module is just an example of adding 
an extra level of nesting. Although namespaces can be useful, they add 
another layer of abstraction to modules, which can lead to problems for 
users very soon and is usually not necessary.

Static methods of exported classes cause similar problems, since the 
class itself adds a level of nesting. It is acceptable to do this if you know 
exactly what you are doing, and the introduction of an additional level of 
nesting will add expressiveness and clearly reflect the purpose of the mod-
ule. Otherwise, we recommend using the helper function.

If You Export Only One Class or One Function, Use Export Default

Similar to “export as close to the top level as possible,” using the default 
export makes life easier for the users of your module. If the main task of the 



Modules and Namespaces    ◾    113

module is to place and export one specific element, then you should seriously 
consider using the default export. This approach makes both the import pro-
cedure itself and the use of imported elements a little easier. For example:

MyClass.ts
export default class SomeType {
  constructor() { ... }
}

MyFunc.ts
export default function getThing() { return "thing"; }

Consumer.ts
import t from "./MyClass";
import f from "./MyFunc";
let x = new t();
console.log(f());

This approach is optimal for users of the module. They can give your type 
the most convenient name for them (t in this case) and will be spared the 
unnecessary use of “through the dot” to search for your objects.

If You Are Exporting Multiple Objects, Put Them on the Top Level

MyThings.ts
export class SomeType { /* … */ }
export function someFunc() { /* … */ 

Accordingly, when importing:

Explicitly Define the Imported Names

Consumer.ts
import {SomeType, someFunc} from "./MyThings";
let x = new SomeType();
let y = someFunc();

Use the Namespace Import Template When Importing 
a Large Number of Items

MyLargeModule.ts
export class Dog { ... }
export class Cat { ... }
export class Tree { ... }
export class Flower { ... }



114    ◾    TypeScript for Beginners 

Consumer.ts

import * as myLargeModule from "./MyLargeModule.ts";
let x = new myLargeModule.Dog();

Do Not Use Namespaces in Modules

When programmers first start using module-based code organization, 
they often place exported elements in namespaces, thus creating addi-
tional nesting levels. But the modules have their own scope, and only the 
exported elements are visible from the outside. Therefore, namespaces are 
not able to bring tangible benefits when working with modules.

Namespaces are convenient for grouping logically related objects and 
global scope types, which is convenient for organizing code. For example, 
in C#, all collection types can be found in System.Collections. By organiz-
ing types in a hierarchy of namespaces, we make it easier for users to find 
them. Modules, on the contrary, in any case already exist as files. We find 
them by the path and file name, respectively, their logical organization is 
already present. You can create a directory /collections/generic/ that con-
tains a list module.

Namespaces are an important tool for preventing name conflicts. 
For example, you can have My. Application.Customer.AddForm and 
My.Application.Order. AddForm – two types with the same name but 
different namespaces. And with modules, there will be no such problem. 
There is no good reason to create two objects with the same name inside 
a module. From the user’s point of view, he can choose any name for the 
imported module, so random name conflicts are not possible.

Risk Indicators

The following is a list of warning signs regarding module structuring. Once 
again, make sure that you are not trying to create namespaces for your 
external modules, if any of the following statements apply to your situation:

•	 The file contains a single top-level declaration, export namespace 
Foo {…} (remove Foo and move everything up a level).

•	 The file contains a single instance of export class or export function 
(consider using export default).

•	 Multiple files contain an identical export namespace Foo {at the top 
level (don’t count on all of them joining into a single namespace Foo!).



Modules and Namespaces    ◾    115

Loading Modules

Past topics have covered how to define and import modules in TypeScript. 
However, native browsers do not yet support working with modules. 
Maybe this feature will be implemented in a beautiful browser of the 
future, but at the moment you need to use special tools to load modules, 
which are called loaders. In this topic, we will look at loading modules 
using the SystemJS loader.

First of all, it is worth noting that loading from the server is done via 
AJAX, so such a TypeScript application must be hosted on a web server. 
That is, we will not be able to simply throw the page into a web browser, 
as, for example, it was in the first topics. Therefore, first of all, you need 
to decide on the web server. The web server can be anything. In this case, 
we will use the most democratic option - Node.js. To do this, we will only 
need to install it on your computer Node.js.

First, we will determine the folder on the hard disk where the project 
will be located. Let’s say it will be folder C:\typescript. And first of all, we 
will define the server file in it. Let it be called server.js and will have the 
following code:

var http = require("http");
var fs = require ("fs");

http.createServer (function (request, response){

// getting the path after the slash
var filePath = request. url. substr(1);
/ / setting the default path
if (filePath == "") filePath ="index.html";
fs. ReadFile(file path, function (error, data){

if(error) { // if the file is not found
response.StatusCode = 404;
response.end ("Not found");
} more
{
response.end(data);
} return
;
})
}).listen (3000, function(){



116    ◾    TypeScript for Beginners 

console. log ("The server is running at http://
localhost:3000/");

This is the most primitive server that gives the user static files. The http.crea-
teServer function is used to create a server, and the fs.ReadFile () function is 
used to read and send files. The server will start at http://localhost:3000/. For 
testing purposes, nothing else is needed in the pritsnip. But again instead of 
node.js this can be any other server technology-php, asp.net, python, etc.

Let’s define the app directory in the project, where the TypeScript files 
will actually be located. Add the file devices.ts to this directory, which will 
represent the simplest module:

export interface Device{
   name: string;
}

export class Phone implements Device {
    name: string;
    constructor(n:string){
       this.name = n;
    }
}

export function Call(phone: Phone) : void{
    console.log("Make a call by", phone.name);
}

And also in the app folder, add the main application file - app.ts with the 
following code:

import {Phone, Call as makeCall} from "./devices";
let iphone: Phone = new Phone("iPhone X");
makeCall(iphone);

This file loads the devices module and uses the types defined in this 
module.

Now, in the root folder of the project, we will define the web page of our 
application-the file index.html:

<html>
<head>
    <meta charset="utf-8" />
    <title>TypeScript Modules</title>
</head>

https://localhost:3000/
https://localhost:3000/
https://localhost:3000/


Modules and Namespaces    ◾    117

<body>
    <h1>TypeScript Modules</h1>
    <div id="content"></div>

    <script src="https://cdnjs.cloudflare.com/ajax/
libs/systemjs/0.21.0/system.js"></script>
    <script>
        SystemJS.config({
             baseURL: "app",
             packages: {
               "/": { defaultExtension: "js" }
            }
        });
        System.import("app.js");
    </script>
</body>
</html>

First of all, SystemJS is loaded from the CDN at the bottom of the page. 
Next, the bootloader is configured using the SystemJS.config () function, so 
that it uses our files. First of all, using the baseUrl: “app” parameter, that files 
will be located in the app folder (where we currently have typescript files).

Since in the end we will compile TypeScript files in JavaScript (since 
only JavaScript is supported by the browser), then in this case we will only 
work with js files. To do this, we define the packages: {“/”: {defaultExten-
sion: “js”}} parameter. “defaultExtension” indicates the extension that will 
be added to the modules.

After that, the main application file is imported - in our case app.js (to 
which app.ts is compiled): System. import(“app.js”).

Module Resolution

Module resolution is the process used by the compiler to find out what the 
import command refers to. Consider the following statement: import {a} 
from “ModuleA.” To check the correctness of the use of a, the compiler 
must know exactly what this element is, for which it is necessary to check 
the corresponding definition-ModuleA.

Relative and Nonrelative Module Imports
Module import is allowed in different ways, depending on whether the 
reference is relative or nonrelative.

https://cdnjs.cloudflare.com
https://cdnjs.cloudflare.com


118    ◾    TypeScript for Beginners 

Relative imports start with /,. /, or../. For example:

import Entry from "./components/Entry";
import { DefaultHeaders } from "../constants/http";
import "/mod";

Any other import is considered nonrelative. For example:

import * as $ from "jQuery";
import { Component } from "angular2/core";

Relative imports are allowed relative to the imported file and cannot be 
resolved by declaring an external module. Relative imports are best used 
for your modules, which are guaranteed to be in the specified location 
during program execution.

Nonrelative imports can be resolved relative to baseUrl or by using 
path mapping, which will be described below. It can also be resolved by 
external module declarations. Use nonrelative paths when importing any 
external dependencies.

Module Resolution Strategies
When the TypeScript compiler sees a nonrelative import path in the state-
ment, it must find the file to import in the program, since the import path 
does not provide the necessary information about where the file is located 
on disk.

The TypeScript compiler uses one of the two strategies available to it 
to find this file. These strategies are Classic and Node. Node is the default 
strategy used by the TypeScript compiler, and most people prefer it because 
most third-party modules are Node modules.

The classicstrategy is present in typescript only for backward compat-
ibility with older versions. This strategy only works if the TypeScript com-
piler detects nonrelative imports.

This Node strategy comes from the standard module resolution strat-
egy in Node.js. This applies to both relative and nonrelative imports.

Classic  This strategy was previously adopted in TypeScripts by default. 
But now it is saved only for backward compatibility.



Modules and Namespaces    ◾    119

Relative import will be allowed relative to the imported file. So import 
{b} from “. /ModuleB” in the source file /root/src/folder/A. ts will search for 
the following files:

/root/src/folder/moduleB.ts
/root/src/folder/moduleB.d.ts

For nonrelative module imports, the compiler will search the directory 
tree for a suitable definition file, starting with the directory containing the 
importing file.

For example:
Nonrelative import from ModuleB, such as import {b} from "ModuleB", 

located in the source code file /root/src/folder/A.ts, will search for "ModuleB" 
in the following locations:

/root/src/folder/moduleB.ts
/root/src/folder/moduleB.d.ts
/root/src/moduleB.ts
/root/src/moduleB.d.ts
/root/moduleB.ts
/root/moduleB.d.ts
/moduleB.ts
/moduleB.d.ts

Node  This strategy copies the behavior of a dynamic module resolution 
engine Node.js. See the full description of the Node resolution algorithm.
js in the module documentation Node.js.

How Does Node.js Resolve Modules?
To understand which way the TS compiler will go, it is important to under-
stand a little about the modules Node.js. Import to Node.js is executed 
by calling the require function. Node.js will act differently depending on 
whether a relative or nonrelative path is specified in require.

Using relative paths is usually not difficult. For an example, let’s look 
at the/root/src/ModuleA file.js, which has the following import statement 
var x = require (“. /ModuleB”); Node.js allows this import in this order:

1.	As a file named /root/src/ModuleB.js, if it exists.

2.	As the /root/src/ModuleB directory, if it has a package file.json, which 
defines the “main” module. In our example, if Node.js found the /root/



120    ◾    TypeScript for Beginners 

src/ModuleB/package file.json containing {“main”: “lib/MainModule.
js”}, then it will refer to /root/src/moduleB/lib/mainModule.js.

3.	 If the /root/src/ModuleB directory contains a file named index.js, by 
default, it is assumed that it is the main module of this directory.

However, the resolution of nonrelative module names is performed in a 
different way. Node will search for your modules in a special directory 
called node_modules. It can be at the same level of the directory hierarchy 
as the current file, or higher. Node will go up the directory chain, looking 
through each node_modules until it finds the module you tried to load.

Continuing with our example, let’s assume that in /root/src/ModuleA.
js used a nonrelative path, and the import command looked like this: var 
x = require (“ModuleB”);. Node will try to resolve ModuleB to one of the 
following paths and will stop at the first suitable one.

/root/src/node_modules/moduleB.js
/root/src/node_modules/moduleB/package.json (if it 
defines the "main" property)
/root/src/node_modules/moduleB/index.js

/root/node_modules/moduleB.js
/root/node_modules/moduleB/package.json (if it defines 
the "main" property)
/root/node_modules/moduleB/index.js

/node_modules/moduleB.js
/node_modules/moduleB/package.json (if it defines the 
"main" property)
/node_modules/moduleB/index.js

Additional Flags of the Module Resolution System
The initial structure of the project does not always correspond to what is 
obtained in the output. Usually, several steps are needed to achieve the 
result. This is the compilation of files .ts in .js, and copying dependencies 
from different sources to a single output file. As a result, the modules in the 
execution process can have names different from the names of the source 
files with their definitions. The module paths in the final output may also 
differ from the corresponding initial paths at the compilation stage.

TypeScript has a set of additional flags that can be used to inform the 
compiler about the transformations that must occur with the source code 
in order to generate the final output.



Modules and Namespaces    ◾    121

It is important to note that the compiler will not perform these trans-
formations. It only uses the information it receives to perform the process 
of allowing the module to be imported into its definition file.

Base URL
The baseUrl is often used in applications that use the AMD module loader, 
where modules are dynamically “deployed” in a single directory. The 
source files of these modules can be located in different places, but the 
build script will put them all in the same directory.

Setting baseUrl tells the compiler where to look for modules. All module 
import commands with nonrelative names are considered relative baseUrl.

The baseUrl value is defined as one of:

•	 the value of the baseUrl command-line argument (if a relative path is 
passed, it is evaluated relative to the current directory);

•	 the value of the baseUrl property in ‘tsconfig. json’ (if a relative path 
is passed, it is evaluated based on the location of ‘tsconfig.json’).

Note that setting baseUrl does not affect the relative module import com-
mands, as they are always resolved relative to the importing files.

Path Mapping

Sometimes the modules are not directly under the baseUrl. For example, 
the “jquery” module import command at runtime will be converted to 
“node_modules\jquery\dist\jquery.slim.min.js”. Loaders use the path 
mapping configuration to dynamically match module names and corre-
sponding files, see the RequireJS and SystemJS documentation.

The TypeScript compiler supports declaring such mappings in the 
“paths” property of the tsconfig.json file. Here is an example of how you 
can specify the “paths” property for jquery.

{
  "compilerOptions": {
      "paths": {
       "jquery": ["node_modules/jquery/dist/
jquery.d.ts"]
    }
}



122    ◾    TypeScript for Beginners 

The “paths” property allows you to use more complex mapping meth-
ods, including multiple backup paths. Let’s look at a configuration in 
which only some modules are available in one location, while the rest are 
located in another. When you build, all these modules will be placed in 
one place. The project diagram may look like this:

projectRoot
├── folder1
│   ├── file1.ts (импортирует ’folder1/file2’ u 
’folder2/file3’)
│   └── file2.ts
├── generated
│   ├── folder1
│   └── folder2
│       └── file3.ts
└── tsconfig.json

The corresponding tsconfig.the json will look like this:

{
    "compilerOptions": {
        "baseUrl": ".",
        "paths": {
             "*": [
                     "*",
                     "generated/*"
                ]
            }
    }
}

So we tell the compiler that for each module whose import statement 
matches the “ *” pattern (i.e. any values), it must search in two places:

“*”: meaning the same name without changes, so match <module-
Name> => <baseUrl>\<moduleName>

“generated\*” meaning the module name with the added prefix “gener-
ated,” so match <moduleName> => <baseUrl>\generated\<moduleName>

Following this logic, the compiler will try to resolve the specified import 
instructions as follows:

import ‘ folder1/file2’



Modules and Namespaces    ◾    123

•	 there is a match to the ‘*’ pattern, which covers the entire module 
name;

•	 try the first replacement in the list: ‘*’ -> folder1/file2;

•	 the result of the replacement is a relative name, we connect it with 
baseUrl -> projectRoot/folder1/file2. ts;

•	 The file exists. Done.

•	 import ‘ folder2/file3’

•	 there is a match to the ‘*’ pattern, which covers the entire module 
name;

•	 try the first replacement in the list: ‘*’ -> folder2/file3 the

•	 result of the replacement is a relative name, connect it to baseUrl -> 
projectRoot/folder2/file3. ts.

•	 The file does not exist, go to the next replacement

•	 the second replacement is ‘generated/*’ -> generated/folder2/file3 the

•	 result of the replacement is a relative name, we connect it with 
baseUrl -> projectRoot/generated/folder2/file3. ts.

•	 The file is done.

Virtual Directories with rootDirs
Project source files located in different directories are sometimes com-
bined at compile time to generate a single output directory. This can be 
thought of as creating a single “virtual” directory from a set of source 
directories.

Using “rootDirs,” you can tell the compiler about the roots that make 
up this “virtual” directory, allowing the compiler to allow relative module 
import commands within these “virtual” directories, as if they were com-
bined into a single directory.

For an example, let’s look at the following project structure:

src
└── views
    └── view1.ts (imports ’./template1’)
    └── view2.ts



124    ◾    TypeScript for Beginners 

generated
└── templates
         └── views
└── template1.ts (imports ’./view2’)

src / views contain files with custom code for UI elements. The files in 
generated / templates contain the UI template binding code that is auto-
matically generated by the template generator as part of the build. In one 
of the build steps, the files from /src/views and /generated/templates/views 
will be copied to the same directories in the output structure of the proj-
ect. The view at runtime expects its template to be nearby, and it can be 
imported using the relative path ". /template".

To indicate this relationship to the compiler, use “rootDirs.” “rootDirs” 
defines a list of root directories (roots) whose contents need to be merged 
dynamically. Continuing our example, the tsconfig file.the json should 
look like this:

{
  "compilerOptions": {
    "rootDirs": [
      "src/views",
      "generated/templates/views"
    ]
  }
}

Each time the compiler encounters a relative module import in a subdi-
rectory of one of the rootDirs, it tries to find that import in the rootDirs 
entries.

Tracking Module Resolution
As mentioned earlier, the compiler has the ability to go beyond the current 
directory when resolving modules. This behavior can make it difficult to 
diagnose the reasons why the module was not resolved or was resolved 
incorrectly. To get an idea of how the module resolution process goes, you 
can use the –traceResolution compiler key.

Suppose we have a simple application that uses a typescript module. 
App. ts contains the import instruction import * as ts from “typescript.”



Modules and Namespaces    ◾    125

│   tsconfig.json
├───node_modules
│   └───typescript
│        └───lib
│               typescript.d.ts
└───src
       app.ts

Calling the compiler with the –traceResolution option

tsc –traceResolution

Results:

======== Resolving module ’typescript’ from ’src/app.
ts’. ========
Module resolution kind is not specified, using 
’NodeJs’.
Loading module ’typescript’ from ’node_modules’ 
folder.
File ’src/node_modules/typescript.ts’ does not 
exist.
File ’src/node_modules/typescript.tsx’ does not 
exist.
File ’src/node_modules/typescript.d.ts’ does not 
exist.
File ’src/node_modules/typescript/package.json’ does 
not exist.
File ’node_modules/typescript.ts’ does not exist.
File ’node_modules/typescript.tsx’ does not exist.
File ’node_modules/typescript.d.ts’ does not exist.
Found ’package.json’ at ’node_modules/typescript/
package.json’.
’package.json’ has ’typings’ field ’./lib/
typescript.d.ts’ that references ’node_modules/
typescript/lib/typescript.d.ts’.
File ’node_modules/typescript/lib/typescript.d.ts’ 
exist - use it as a module resolution result.
======== Module name ’typescript’ was successfully 
resolved to ’node_modules/typescript/lib/
typescript.d.ts’. ========



126    ◾    TypeScript for Beginners 

What to Look for in the Trace?

Name and location of the import statement

======== Resolving module 'typescript' from 'src/
app.ts'. ========

The strategy that the compiler follows

Module resolution kind is not specified, 
using 'NodeJs'.

Loading type declarations (typings) from npm packages

'package.json' has 'typings' field './lib/
typescript.d.ts' that references 'node_modules/
typescript/lib/typescript.d.ts'.

Final result

======== Module name 'typescript' was successfully 
resolved to 'node_modules/typescript/lib/
typescript.d.ts'. ========



127DOI: 10.1201/9781003203728-4

C h a p t e r  4

TS Runtime

WHAT IS RUNTIME?
Runtime is a computing environment that is necessary for the execution of 
a computer program and is available during the execution of a computer 
program. In the runtime environment, it is usually impossible to change 
the source code of the program, but there may be access to the operating 
system environment variables, object tables, and shared library modules.

Interaction with the runtime environment for interpreted program-
ming languages is implemented directly in the interpreter, which provides 
interaction of language constructs with the environment in which it is 
run. For compiled languages, interaction with the computing environ-
ment can be implemented by a set of plug-in shared runtime libraries, 
or entirely in a virtual machine that executes the intermediate code into 
which the program is compiled.

NODE.JS
Node is a runtime environment that allows you to write server-side 
JavaScript (JS) code. It became very widely distributed after its release in 
2011. With the growth of the code base, writing server-side JS code can be 
difficult due to the nature of the JS language: dynamic and weakly typed.

Node.js is not a separate programming language but a platform for 
using JS on the server side. If we talk about the language, then both the 
frontend and the backend use the same JS. The only difference is in the set 
of APIs that frontenders and backenders use.

https://doi.org/10.1201/9781003203728-4


128    ◾    TypeScript for Beginners

Browser-based JS uses Web APIs that provide access to the DOM and 
user interface of pages and web applications. Server-side JS uses APIs that 
provide access to the application file system, http requests, and streams.

That is, Node.js is a technology for using JS on the backend. The features 
and prospects of the development of the JS language can be found in the 
corresponding article, and here we are talking about one of the technolo-
gies of this language.

Both are browser-based JS and Node.js runs in the V8 runtime. This 
engine uses your JS code, and converts it to faster machine code. Machine 
code is low – level code that a computer can run without having to inter-
pret it first.

Using Node.js implements the “JavaScript for everything” paradigm. 
It involves using a single programming language to develop web applica-
tions instead of using different languages to work on the frontend and 
backend.

Most often, this platform is used to create web services that require 
intensive information exchange with users, including the implementation 
of chats, collaboration systems, social networks, etc. Many programs cre-
ated on Node.js, consists of server and client parts.

WHY TYPESCRIPT IS HERE TOO?
Developers switching to JS from other languages often complain about the 
lack of powerful static typing, but TypeScript (TS) allows you to eliminate 
this drawback.

Technically speaking, TS is a superset of JS, and that means that all JS 
code is correct TS code.

Why Node.js?

The most significant advantage is the non-blocking I/O model. This sys-
tem is event-driven and works asynchronously, lining up the queue by pri-
ority. When thousands of people connect to the server at the same time, 
it is easier for it to cope with the load, since there is no need to create a 
separate thread for each connection. Proper allocation of resources helps 
to withstand a larger number of connections.

WHAT IS DENO?
If you are familiar with Node.js, a popular server-side JS ecosystem, Deno 
is pretty much the same. Almost, but not quite.



TS Runtime    ◾    129

Deno is a secure JS/TS runtime built on V8, Rust, and Tokio, providing 
default security and developer-friendly. The Deno runtime environment 
by Ryan Dahl (creator of Node.js) started developing to replace Node.js, 
released back in 2009, due to the lack of important, in his opinion, short-
comings. Ryan’s reason for thinking about Deno was due to several prob-
lems in Node.js:

•	 modular system and its distribution,

•	 support for legacy APIs,

•	 security issues.

Main Features of Deno
Safety
By default, Deno prohibits sensitive actions such as reading environment 
variables or writing to the file system.

The Deno process runs in unprivileged mode, and to access data like 
environment variables, you need to pass special flags.

Write permission to the file system, as well as permissions related to the 
environment and network, are disabled. To allow these actions, call Deno 
with the –allow-write and –allow-net arguments.

All interaction between the privileged Deno process and v8 is reduced 
to messaging (previously written in Go, now ported to Rust). This allows 
you to create a single point for checking all messages.

Module System
Forget about package.json and node_modules. When importing source 
files, you can specify either a relative or absolute path, or their full URL:

import { test } from "https://unpkg.com/deno_
testing@0.0.5/testing.ts"
import { log } from "./util.ts"

By default, all source files are cached. You can use the –reload argument to 
update dependencies. It works like the F5 key in the browser.

TS support out of the box
TS is supported in Deno by default. That’s it. Without any “but.” 

Without configurations.

https://unpkg.com
https://unpkg.com


130    ◾    TypeScript for Beginners

Installation of Deno

Let’s get down to business, and start with the installation, we will analyze 
what, where, how, and why it is installed.

Using Shell (Mac, Linux):

curl -fsSL https://deno.land/x/install/install. 
sh | sh

PowerShell (Windows):

iwr https://deno.land/x/install/install.ps1  
-useb | iex

Homebrew (Mac):

brew install deno

Chocolatey (Windows):

choco install deno

Scoop (Windows):

scoop install deno

Here I should warn you that installing with the help of package managers 
carries a danger in the form of an incomplete complete removal and update 
mechanism. It is best to control the versions and paths where it will be installed.

Also, to upgrade to the current version, the Deno upgrade command is 
provided.

Well, now let’s analyze the installer itself using the example of installa-
tion in Windows.

Installation in Windows
Almost everything in Deno is based on GitHub, and the installation will 
be made from it, and the latest release will be taken from it.

In the future, to ensure the operation of Deno as a whole, the following 
files and directories will be created along the path {username}\AppData\
Local\deno:

•	 deps: This directory will contain all the dependencies that were ever 
downloaded, grouped by the download path, and also next to each 
file will be a separate metadata file, which specifies the response 

https://deno.land
https://deno.land
https://deno.land
https://deno.land


TS Runtime    ◾    131

headers, from the server that was accessed during the build, and, of 
course, the URL itself. This is actually the repository of your depen-
dencies, where Deno will first turn during the launch of your project. 
They can also be reloaded if necessary by adding the-r flag to the 
Deno run command. For those who are worried about lock files and 
cross-dependencies, this will be described in detail in the section 
“Deno functionality.”

•	 gen: Your js-compiled TS files will be located here. This, as you prob-
ably already understand, provides a quick start of the application 
after the first build.

Compiled projects will be located here too. For example, at the 
path gen/file/C/dev/my_first_project

•	 deno_history.txt: This file contains a short-term history of entering 
commands in Deno in console mode.

•	 lib.deno.d.ts, lib.deno_runtime.d.ts: This file contains the typings 
of Deno core itself. You will need to know about them when you try 
to play with different versions of Deno.

Internal Part

•	 The TS layer: Is treated as unprivileged, which has no access to the 
file system or network (since they run in V8, which is a “sandbox”). 
This is only possible by passing messages to the Rust backend, which 
is “privileged.” Therefore, many Deno APIs (especially filesystem 
calls) are implemented on the TS side as purely creating buffers for 
data, sending it to the Rust backend via the Rusty V8 middleware, 
and waiting (synchronously and asynchronously) for the result to be 
sent back. The functions Deno. core. send (), Deno. core. recv() do 
just that.

•	 Rusty V8: Is a thin layer between the TS interface and the Rust 
backend, serving to interact with V8 and provide only the necessary 
bindings. It is also used to launch V8 platforms and create/load a V8 
snapshot. More information about V8 snapshots can be found on 
the V8 blog https://v8.dev/blog/custom-startup-snapshots. It’s worth 
noting that the snapshot for Deno also contains a TS compiler. This 
allows you to significantly reduce the startup time of the compiler.

https://v8.dev


132    ◾    TypeScript for Beginners

•	 Rust backend: Currently, the server side, or “privileged side,” which 
has access to the file system, network, and environment, is imple-
mented in Rust. For those unfamiliar with the language, Rust is a 
system programming language developed by Mozilla, with a focus 
on memory security and concurrency. It is used in projects such as 
Servo. The Rust backend is ported from Go, which served to create the 
original Deno prototype, introduced in June 2018. The reasons for the 
transition are related to concerns about double GC.

•	 V8 is Google’s JS/WebAssembly engine: Written in C++, it is also 
used in particular in Google Chrome and Node.js. V8 does not sup-
port TS. Instead, all the TS code you run in Deno is compiled into JS 
using the TS snapshot compiler, and the generated files are stored in 
the. deno folder. If the user does not update the code, only cached JS 
files will run after the initial compilation.

•	 Tokio is an asynchronous runtime environment for Rust. It is used 
to create and process events. This allows Deno to spawn tasks in the 
internal thread pool and receive notifications to process output after 
the task completes. Tokio relies on Rust Future, a construct similar 
to Promise in JS.

Safety
Deno is safe by default. For comparison, Node.js has full access to your file 
system and network.

To run the program without permissions, just run the command:

deno run main.ts

If your code requires permission, you will get the following error:

error: Uncaught PermissionDenied: …

Deno uses command-line options to explicitly allow access to various 
parts of the system. The most commonly used ones are

•	 environment

•	 network

•	 file system

•	 running child processes



TS Runtime    ◾    133

It is recommended to allow only what is really necessary. For example, to 
allow reading only from a certain directory, you can use the-allow-read 
flag, and to enable the network to go to certain URLs, the-allow-net flag:

deno run –allow-read=/path –allow-net=localhost:4545 
file.ts

If you get tired of typing all the flags each time, you can write it in the bash 
script or use the-A (– allow-all) flag, which I highly recommend. Or you 
will like Drake-an analog of make only for Deno.

Also, you can install the Deno program by using Deno install with the 
necessary permissions. After installation, your program will be available 
globally, as it will be in $PATH.

Strict: True by Default
At some point, the developers decided that this approach would ensure the 
reliability of the code. But, nevertheless, it is possible to remove it with a 
custom config.

tsconfig.json

Deno has a preset config by default, but you can set your own custom con-
fig, as in normal applications, with the exception of some options. I prefer 
to use decorators in TS, so there is no way without a custom config. Here 
is an example of running with a custom config:

deno run -c tsconfig.json main.ts

Deno Modules
One of the main major differences between Deno and Node.js is that 
Deno uses the official ECMAScript module standard, not the deprecated 
CommonJS. In Node.js ES modules only appeared at the end of 2019, with 
version 13.2.0, but even then, support remained immature, and it is still 
enabled by the controversial extension. mjs. Deno breaks out of the past, 
using modern web standards for its modular system.

import * as framework from "https://deno.land/x/
alosaur/src/mod.ts"; import {assert} from "https://
deno.land/std/testing/mod.ts";

https://deno.land
https://deno.land
https://deno.land
https://deno.land


134    ◾    TypeScript for Beginners

As you probably noticed, unlike your usual TS code, you need to spec-
ify the file extension in the paths. This has a positive effect on the build 
speed of your applications. As Ryan Dahl has already noticed, not using 
extensions when required was an N1 design error. Node.js.

The modules can also be divided into three categories: Core, Std, X.

Deno.core
Here is the code that is necessary to ensure the work with the Rust backend.

Deno Standard Modules
https://deno.land/std/is a set of standard modules supplied by Deno devel-
opers, which guarantees their implementation together with Deno. It 
focuses only on the general functionality, which is enough to write any 
program. The standard library of the Go language was taken as a basis. 
Therefore, it is quite self-sufficient, due to the fact that even the testing 
functionality is included in the standard lib.

Deno X
This category includes everything. What was not developed by the main 
Deno team, as well as any import of third-party code into your application.

https://deno.land/x – is only a link shortener. And you can add your lib 
to this registry by sending a pull request.

JSPM, Pika.dev – sites designed primarily for converting any npm 
package to an ES module. For example so:

import HandlebarsJS from ‘https://dev.jspm.io/
handlebars@4.7.6’;

Package Manager
There has been a radical rethink regarding how package management 
works in Deno. Instead of relying on a central repository, it is decentral-
ized. Anyone can place a package anywhere. There are advantages and 
disadvantages to using a centralized repository like npm, and this aspect 
of Deno is sure to be the most controversial.

No more package.json, now it is accepted to use deps.ts, in which you 
can describe the necessary imports as follows:

export {assert} from "https://deno.land/std@v0.42.0/
testing/asserts.ts";

https://deno.land
https://deno.land
https://dev.jspm.io
https://dev.jspm.io
https://deno.land
https://deno.land


TS Runtime    ◾    135

You can also use the-importmap (-unstable) flag, which will allow you to 
describe all imports in a single json file:

{
  "imports": {
    "moment": "./moment/moment.ts",
    "moment/": "./moment/", 
    "lodash": "./lodash/lodash.ts", 
     "lodash/": "./lodash/",
     "https://www.unpkg.com/vue/dist/vue.runtime.esm.
js": "./vue.ts"
 }, 
   "scopes": { 
     "scope/": {
        "moment": "./scoped_moment.ts"
           }
      }
 }

It does not support std modules, but, nevertheless, it can work with the 
following schemes: file:, http:, https:.

Lock File
Deno can store and verify the integrity of subresources of modules using a 
small JSON file. Using the – lock = lock flag.json to enable and specify file 
validation. To update or create a file, use – lock = lock.json – lock-write.

Web Standards
Everything that works in Deno works the same way as in the browser by 
default, and Deno from the very beginning tries to ensure that there are 
no strange errors for Deno users. What I mean by that:

> reverse=a=>a.sort(n=>1)                                                                                                                                       
                 > reverse([1,2,3])                                                                                                                                 
                                        - node  
(10.13.0): [3,2,1]                                                                                                                                          
             - deno (0.4.0) [1,2,3]                                                                                                                                          
                             - chrome (74.0)  
[1,2,3]                                                                                                                                               
                               - other browsers: 
[1,2,3]

https://www.unpkg.com
https://www.unpkg.com


136    ◾    TypeScript for Beginners

WASM, RUST, Plugins
It is worth mentioning that Deno is able to work with WASM files by default. 
For example, some database drivers have now been integrated in this way.

Separately, I want to say about native plugins. Since the Deno plugins 
are not the primary task, it cannot be downloaded directly, for example, 
using the usual import, and this would be strange, because in the browser 
you do not have this option, but nevertheless there is Deno.openPlugin. 
This is an asynchronous function that automatically loads the appropri-
ate binary file, according to the platform, and caches it in the directory. 
deno_plugins of the current working directory.

For example:

const pluginOptions: PerpareOptions = {
 name: "test_plugin",
 // Whether to output log. Optional, default is true
 // printLog: true,

 // Whether to use locally cached files. Optional, 
default is true
 // checkCache: true,
 // Support "http://", "https://", "file://" 
urls: {
     mac: '${releaseUrl}/libtest_plugin.dylib', 
     win: '${releaseUrl}/test_plugin.dll',
     linux: '${releaseUrl}/libtest_plugin.so',
 },
 };
 const rid = await prepare(pluginOptions);
 //@ts-ignore
 const { testSync } = Deno.core.ops(); 
const response = Deno.core.dispatch(
    testSync, 
   new Uint8Array([116, 101, 115, 116])
 )!;
 console.log(response);

Debugging

Deno has built-in debugging, but at the time of this writing, the Visual 
Studio Code extension does not support it. To debug manually, you need 
to do the following:

deno run -A -- inspect-brk fileToDebug.ts



TS Runtime    ◾    137

Open in Chrome chrome:/ / inspect, see Target Deno, and click Inspect. 
This will give you debugging in the browser.

Deno has a built-in file monitoring mechanism using the Rust notifica-
tion library via the Deno.watchFs () API. Deno likes to leave the hard work 
behind the scenes with its APIs and allows the user to implement their 
code as they like. If you need the – watch flag, then the implementation of 
this code is left to you.

At the moment, the most popular development tool is Visual Studio 
Code with the justjavac extension.vscode-deno.

Testing

The test tool is built into the Deno kernel using the Deno.test () function. 
Validation functions such as assert, assertEquals, etc. are included in the 
standard library. Therefore, the test code should look like this:
import { assert, assertEquals } from "https://deno.
land/std/testing/asserts.
ts"; 

Deno.test({
    name: "Test name",
   fn(): void {
         assert("test" === "test"); 
         assertEquals("test", "test");
   },
 });

To start, you just need to type in the console:
deno test

Integration Testing

Starting the development of your framework on Deno (https://github.
com/alosaur/alosaur), and by increasing the functionality on it, the need 
for integration tests has increased dramatically. Fortunately, Deno already 
had the best practices of such tests. To do this, use the function to start 
child processes – Deno. run(). There is a special feature of such tests: you 
need to release resources after passing them.

Compiler API

Deno supports runtime access to the built-in TS compiler. There are three 
methods in the Deno namespace that provide this access: Deno.compile () 
Deno.bundle () Deno.transpileOnly()

https://deno.land
https://deno.land
https://github.com
https://github.com


138    ◾    TypeScript for Beginners

compile () – this is if you called tsc via Node.js,
bundle () is the same as compile, except that instead of returning files, 

it returns a single string, which is an ES module that includes all the code 
that was included at the time of compilation. This command is also avail-
able from the Deno bundle CLI.

For example, if the main module looked something like this:

export {foo} from "./foo.js";
export const bar = "bar";

It can be imported:

import {foo, bar} from "./lib.bundle.js";

The Bundle can also be downloaded in a web browser. Bundle is a stand-
alone ES module, so the type attribute must be set as “module.” For 
example:

<script type="module">
    import * as website from "website.bundle.js"; 
</script>

transpileOnly () is the same as transpileModule in TS. All it does is “erase” 
any types from the modules and generate JS. No type checking and depen-
dency resolution.

dev_server
It was with the help of transpileOnly that dev_server was implemented – a 
utility for running your frontend code on Deno.

How Does It Work?
When accessing the index.html, requested by main.ts.

It is also transpiled (in accordance with the specified tsconfig), and out-
puts the ready-made js code at this URL.

What about Dependencies?
And here, of course, comes to the aid of jspm, cdn. pika, unpkg. Therefore, 
you will have to specify the appropriate importmap.

As a result, you have a JIT output, as it was in the days of systemjs.



TS Runtime    ◾    139

On the plus side: you don’t have to wait for the dev build to happen in 
the console.

But here, of course, various preprocessors are not taken into account, 
which now most of us do not even think about using the Angular CLI.

How ty Try It?

deno run -- allow-net -- allow-read -- allow-write 
– unstable

CI and CD
Of course, for effective development, it would be impossible to do without 
well-built application delivery. For example, Deno itself was transferred to 
GitHub actions. 

INSTALLING AND COMPILING THE TS
To start working with TS, install the necessary tools. There are two ways to 
install TS: via the npm package manager or as a plugin for Visual Studio.

Installation via NPM

To install via npm, you must first install Node.js (if it was not previously 
installed). After installing Node.js you need to run the following com-
mand in a command prompt (Windows) or terminal (Linux):

npm install -g typescript

When installing on macOS, you also need to enter the sudo command. 
When you enter this command, the terminal will ask for the user’s user-
name and password to install the package:

sudo npm install -g typescript

It is possible that TS was already installed earlier. In this case, you can 
update it to the latest version using the command:

npm update -g typescript



140    ◾    TypeScript for Beginners

To check the version, enter the command:

tsc -v

Installing as a Visual Studio Plugin

If we use Visual Studio, then when it is installed, all the necessary tools for 
working with TS are automatically installed, and we do not need to take 
any additional actions.

So, after installing the development tools for TS on the path C:\Program 
Files (x86)\Microsoft SDKs\TypeScript\[version_number] we can see all 
the installed files, including the compiler file itself tsc.exe.

Compiling an App

First, create the application directory. In my case, it will be a folder along 
the path C:/typescript. Add the file to the directory index.html. Open this 
file in any text editor and define the following code1 in it:

<!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8" />
    <title>TypeScript HTML App</title>
</head>
<body>
    <h1>TypeScript HTML App</h1>
    <div id="content"></div>
    <script src="app.js"></script>
</body>
</html>

This is a normal html file where the file is attached app.js. Now, in the 
same directory, create the app.ts file. And it is app.ts, not app.js, that is, the 
TS code file. It is also a plain text file. And in it we define the following 
content:

ar el = this.document.getElementById("content");

class user{

1	 The codes in this chapter are derived from https://www.npmjs.com/package/typescript.

https://www.npmjs.com


TS Runtime    ◾    141

name : string;
age : number;
constructor (_name:string, _age: number){

this.name = _name;
this. age = _age;
}
}

var tom : User = new user ("Jack", 29);
el. innerHTML = "Name:" + jack.name + " age:" + jCK.
age;

Here, we get the element with id=content, and create the User class. Next, 
we’ll look at creating and using classes. Creating an object of this class 
with the name Jack and the age of 29 years. And output the object data to 
the element. When saving a file, it is better to choose utf-8 encoding.

Now let’s compile this file. To do this, in the command line/terminal, 
use the cd command to go to the directory where the app.ts file is located 
(in my case, this is C:\typescript). And to compile, run the following 
command:

tsc app.ts

After compilation, an app file is created in the project directory.js, which 
will look like this:

var el = this.document.getElementById("content");
var User = (function () {
    function User(_name, _age) {
        this.name = _name;
        this.age = _age;
    }
    return User;
}());
var jack = new User("Jack", 29);
el.innerHTML = "Name: " + jack.name + " age: " + jack.
age



142    ◾    TypeScript for Beginners

MERGING DECLARATIONS
TS uses several unique principles to describe JS objects at the type level. 
One example of such a completely exclusive principle for TS is “ad merge.” 
Understanding how this mechanism works gives you an advantage when 
working with existing JS code, and also opens the door to more complex 
abstraction principles.

In this chapter, “merging declarations” means that the compiler com-
bines two separate declarations with the same name into a single defi-
nition. The resulting definition has properties that are common to both 
source declarations. Not only two ads can be combined, but any number 
of ads can be combined.

Basic Concepts

In TS, a declaration creates entities in at least one of three groups: 
namespaces, types, or values. Namespace-creating declarations create 
namespaces that contain names that are accessible through the dot syn-
tax. The type-creating declarations create a type with the described form 
that is bound to the specified name. Finally, value-generating declarations 
create values that are available in the generated JS code.

Declaration Type Namespace Type Value

Namespace X X
Class X X
Enumeration X X
Interface X
Type Alias X
Function X
Variable X

Understanding what is created by a particular ad helps you understand 
how the merge occurs.

Merging Interfaces

The simplest and perhaps most commonly used type of merge is interface 
merge. At the simplest level, such a merge mechanically merges the mem-
bers of both declarations into a single interface with the same name.

interface Box {
     height: number;
     width: number;



TS Runtime    ◾    143

}

interface Box {
    scale: number;
}

let box: Box = {height: 5, width: 6, scale: 10};

Interface members that are not functions must be unique. The compiler 
will throw an error if both interfaces define a member with the same name 
that is not a function.

Each member function with the same name is treated as an overload 
description for the same function. It is also worth noting that when merg-
ing interface A with a subsequent interface A, the second one will have a 
higher priority than the first one.

So, in this example:

interface Cloner {
    clone(animal: Animal): Animal;
}

interface Cloner {
    clone(animal: Sheep): Sheep;
}

interface Cloner {
    clone(animal: Dog): Dog;
    clone(animal: Cat): Cat;
}

Three interfaces will be merged together and you will get the following ad:

interface Cloner {
    clone(animal: Dog): Dog;
    clone(animal: Cat): Cat;
    clone(animal: Sheep): Sheep;
    clone(animal: Animal): Animal;
}

Note that the elements within the groups retain their order, but the groups 
themselves are ordered so that the later overloads are at the beginning.

The only exception around this rule is specialized signatures. If the sig-
nature has a parameter with the type of a single string literal (i.e., not 



144    ◾    TypeScript for Beginners

a union of string literals, for example), then it will rise to the top of the 
combined list of overloads.

Merging Namespaces

Like interfaces, members of namespaces with the same names are also 
combined. Since declaring a namespace creates both a namespace and a 
value, you need to understand how they are all combined.

To merge namespaces, the type declarations from the exported inter-
faces in each of the namespaces are combined to form a single namespace 
with the combined interface definitions inside.

When merging namespace values, each definition is taken, and if 
a namespace with that name already exists, it is expanded by adding 
exported members from the second namespace.

In this example, the combined declaration is Animals:

namespace Animals {
    export class Zebra { }
}

namespace Animals {
    export interface Legged { numberOfLegs: number; }
    export class Dog { }
}

equivalent to:

namespace Animals {
    export interface Legged { numberOfLegs: number; }

    export class Zebra { }
    export class Dog { }
}

This namespace merge model is not bad to start with, but you need to 
understand what happens to members that are not exported. Non-exported 
members are only visible in the original (non-merged) namespace. This 
means that after the merge, they will not be visible to members from other 
ads. This can be seen more clearly in the following example:

namespace Animal {
    let haveMuscles = true;



TS Runtime    ◾    145

    export function animalsHaveMuscles() {
       return haveMuscles;
    }
}

namespace Animal {
    export function doAnimalsHaveMuscles() {
       return haveMuscles;  // <-- error, haveMuscles 
isn’t seen here
    }
}

Since haveMuscles is not exported, it is only visible in the animalsHave-
Muscles function from the same unconnected namespace. The doAni-
malsHaveMuscles function, although included in the combined Animal 
namespace, does not see the non-exported member.

Merging Namespaces with Classes, Functions, and Enumerations

Namespaces are flexible enough to be combined with other types of dec-
larations. To do this, the namespace declaration must be placed after the 
declaration to be merged with. The resulting ad will have the properties 
of both source ads. This feature is used in TS to model a number of tech-
niques from JS and other programming languages.

Merging Namespaces with Classes
This allows you to describe nested classes.

class Album {
    label: Album.AlbumLabel;
}
namespace Album {
    export class AlbumLabel { }
}

The visibility rules for the merged members are the same as those described 
in the “Merging Namespaces” section, so AlbumClass must be exported 
to be visible in the merged class. The final result is a class used from inside 
another class. You can also use namespaces to add static members to exist-
ing classes.

In addition to the nested class technique, you are probably familiar 
with the practice from JS of creating a function that is then extended by 



146    ◾    TypeScript for Beginners

adding properties to it. In order to create such structures type-safe, TS 
uses ad merge:

function buildLabel(name: string): string {
    return buildLabel.prefix + name + buildLabel.
suffix;
}

namespace buildLabel {
    export let suffix = "";
    export let prefix = "Hello, ";
}
alert(buildLabel("Sam Smith"));

Prohibited Merges

Not all merges are allowed. Currently, classes cannot be combined with 
other classes or with variables.

In addition to the traditional OO hierarchy, there is a way to create 
classes from reusable components by combining simpler incomplete 
classes. The idea of mix-ins or traits is also used in languages such as Scala. 
This approach has also gained some traction in the JS user community.

The following code demonstrates the use of impurity in TS. The exam-
ple will be followed by a detailed explanation.

// Disposable mixin
class Disposable {
    isDisposed: boolean;
    dispose() {
       this.isDisposed = true;
    }

}

// Activatable mixin
class Activatable {
    isActive: boolean;
    activate() {
        this.isActive = true;
    }
    deactivate() {
        this.isActive = false;
    }
}



TS Runtime    ◾    147

class SmartObject implements Disposable, Activatable {
    constructor() {
        setInterval(() => console.log(this.isActive + 
" : " + this.isDisposed), 500);
    }

    interact() {
        this.activate();
    }
    // Disposable
    isDisposed: boolean = false;
    dispose: () => void;
    // Activatable
    isActive: boolean = false;
    activate: () => void;
    deactivate: () => void;
}
applyMixins(SmartObject, [Disposable, Activatable]);
let smartObj = new SmartObject();

setTimeout(() => smartObj.interact(), 1000);

////////////////////////////////////////
// Somewhere in your dynamic library
////////////////////////////////////////

function applyMixins(derivedCtor: any, baseCtors: 
any[]) {
    baseCtors.forEach(baseCtor => {
        Object.getOwnPropertyNames(baseCtor.
prototype).forEach(name => {
          derivedCtor.prototype[name] = baseCtor.
prototype[name];
        });
    });
}

The code2 begins with the definition of two classes that will be used as 
impurities. Each of them is aimed at demonstrating a certain activity or 

2	 The codes in this chapter are derived from https://www.typescriptlang.org/docs/handbook/ 
mixins.html.

https://www.typescriptlang.org
https://www.typescriptlang.org


148    ◾    TypeScript for Beginners

opportunity. Later, we will mix them to form a new class that combines 
their properties.

// Disposable mixin
class Disposable {
    isDisposed: boolean;
    dispose() {
       this.isDisposed = true;
    }

}
// Activatable mixin
class Activatable {
    isActive: boolean;
    activate() {
        this.isActive = true;
    }
    deactivate() {
        this.isActive = false;
    }
}

Next, we will create a new class that will combine both admixtures. Let’s 
look at how to achieve this:

class SmartObject implements Disposable, Activatable {

The first thing you might have noticed is that implements is used instead 
of extends. This approach allows you to treat classes as interfaces and use 
only the types Disposable and Activatable, and not their implementations. 
It turns out that we will have to create the implementation in a new class. 
But the problem is that this is exactly what we would like to avoid when 
using impurities.

To avoid doing the implementation again, we create stand-in proper-
ties, whose types will be derived from the corresponding impurities. It is 
sufficient for the compiler to have these elements available dynamically. 
This approach allows us to take advantage of the impurities, but with the 
additional burden of taking into account such nuances.



TS Runtime    ◾    149

// Disposable
isDisposed: boolean = false;
dispose: () => void;
// Activatable
isActive: boolean = false;
activate: () => void;
deactivate: () => void;

As a result, we combine our admixtures in a class, creating a complete 
implementation.

applyMixins(SmartObject, [Disposable, Activatable]);

Let’s write an auxiliary function designed to create impurities. It will run 
through the properties of the impurities and copy them to the target ele-
ment, filling the duplicate properties with their implementations.

function applyMixins(derivedCtor: any, baseCtors: 
any[]) {
    baseCtors.forEach(baseCtor => {
        Object.getOwnPropertyNames(baseCtor.
prototype).forEach(name => {
            derivedCtor.prototype[name] = baseCtor.
prototype[name];
        });
    });
}



https://taylorandfrancis.com


151DOI: 10.1201/9781003203728-5

C h a p t e r  5

TypeScript Architecture

As we know, TypeScript was created by Microsoft to facilitate the creation 
of large-scale JavaScript applications. Some TypeScript features, such as 
modules or classes, can make it easier to build large applications, but this 
is not enough. We need a strong application architecture if we want to be 
successful in the long run. In this chapter, we will look at all the aspects 
you need to create an application.

WHAT IS AN APPLICATION ARCHITECTURE?
An application architecture is a set of methods and patterns that help 
developers create structured applications. Architecture is, first of all, a 
global thing. Its understanding is necessary not in the context of a spe-
cific programming language. You need to understand the key ideas in gen-
eral to understand how the benefits of using a particular architecture are 
achieved.

WHY DO WE NEED ARCHITECTURE?
The architecture is needed to save time during the development process, 
maintain the testability and extensibility of the system over a long period 
of development.

Initially, on building a good and clear architecture, as a result, we get 
the following advantages:

•	 It is cheaper to maintain the code (hence, less time and financial 
costs).

https://doi.org/10.1201/9781003203728-5


152    ◾    TypeScript for Beginners

•	 Simplify the testability of the code (hence, you will need fewer testers 
and lower losses due to missed “bugs on the prod”).

•	 Accelerate the introduction of new developers into the project.

To ensure the stable operation of complex web applications, it is desirable 
to use technologies that will give the best performance and speed. There 
are two ways to develop web applications: single-page applications (SPA) 
and multi-page applications (MPA).

SINGLE-PAGE APPLICATION
Single-page applications allow you to simulate the work of desktop appli-
cations. The architecture is designed in such a way that when you go to a 
new page, only part of the content is updated. This way, there is no need to 
re-load the same items. This is very convenient for developers and users. 
For SPA development, one of the most popular programming languages is 
used – JavaScript. Regardless of which structure of the future web applica-
tion you choose, pay attention to the graphics and user interface.

Main advantages of SPA:

•	 Performance: Since SPA does not update the entire page but only the 
necessary part, this significantly increases the speed of work.

•	 High speed of development: Readymade libraries and frameworks 
provide powerful tools for developing web applications. Backend 
and frontend developers can work on the project in parallel. Thanks 
to a clear separation, they will not interfere with each other.

•	 Mobile apps: SPA makes it easy to develop a mobile application 
based on readymade code.

MULTI-PAGE ARCHITECTURE
Multi-page applications have a more classic architecture. Each page sends 
a request to the server and completely updates all the data, even if the data 
is small. Thus, performance is wasted on displaying the same elements. 
Accordingly, this affects the speed and performance.

Many developers use JavaScript to increase speed and reduce load. A 
good example is updating products without reloading the page, when 
using filters in an online store. This is much more convenient and, most 



TypeScript Architecture    ◾    153

importantly, faster. The main advantages of Multi-Page Application 
(MPA) are

•	 Easy SEO optimization: The MPA architecture makes it quite easy 
to optimize each page for search engines.

•	 Easy development: Typically, developing a multi-page application 
requires a smaller stack of technologies.

•	 Lots of solutions.

Each architecture has its own advantages and disadvantages and is well 
suited for a particular type of project. SPA is distinguished by its speed 
and the ability to develop a mobile application based on readymade code. 
But at the same time, SPA has poor SEO optimization. Thus, this architec-
ture is an excellent approach for SaaS platforms, social networks, closed 
communities, where search engine optimization does not matter.

MPA is more suitable for creating large online stores, business sites, 
catalogs, marketplaces, etc. A well-optimized MPA has high speed and 
performance, but still does not allow you to easily develop a mobile appli-
cation. MPA and SPA with the right architecture are well suited for devel-
oping scalable web applications.

CREATING AN APPLICATION IN TYPESCRIPT
As an example, we will write a simple function that will output messages 
to the console. 

What a function should be able to do:

•	 Output a message

•	 Attach to the message any data that needs to be logged in

•	 [Optional] Add a prefix to the message to understand which module 
outputs the log

•	 [Optional] Color the message depending on the type: log (normal 
message), info (notification), warn (warning), error (error)

_log(&lt;message&gt;, &lt;arg&gt;, &lt;prefix&gt;, 
&lt;type&gt;);



154    ◾    TypeScript for Beginners

Something like this:

_log('Here is our user id:', 123);
_log('Here is our user id:', 123, 'User Profile', 
'info');

MAKING AN APP
Let’s create a new project, and in it a file, logger.ts.

As we have already found out, _log will have four parameters. Since 
TypeScript is a statically typed language, you need to describe the type of 
each argument.

message – type String

arg – data for logging, of any type. For such cases, TypeScript has the 
any type.

prefix – the String type.

type – the message style. You can create logs in any way, but for sim-
plicity we will use readymade Console API methods: log, info, 
warn, error. To protect yourself from passing any other types, you 
must Strongly list the allowed values. To do this, create a custom 
ConsoleMethod data type.

type ConsoleMethod = 'log' | 'info' | 'warn' | 
'error';

function _log(message: string, args: any, prefix: 
string, type: ConsoleMethod = 'log'): void {

        prefix  = prefix?  prefix + ': ' : '';
        message = prefix + message;

        console[type](message, args);
}

// Example of a call
_log('Test logging message', 123, 'Logger', 'info');

Compile .ts in .js. To do this, run the command in the project directory:
tsc logger.ts

If no errors occurred during compilation, the file should appear logger.js. 
At the same time, if somewhere in our application there is a log with an 



TypeScript Architecture    ◾    155

incorrect type, we will see a compilation error. Let’s replace the example 
call with an erroneous one:

_log('Test logging message', 123, 'Logger', 
'debug');

That is, by strongly typing the arguments, we protected ourselves from 
errors when calling our method. If you type all the methods of the appli-
cation in this way, its stability will increase. In addition, the compiler will 
not allow you to build a script with syntax errors.

COMPILATION: WATCH MODE
To avoid running the compilation manually each time, you can enable 
automatic recompilation when files are changed:

tsc *.ts –watch

MV* ARCHITECTURE
Many tasks that would normally be performed on the server side are per-
formed on the client side in SPAs. This has led to an increase in the size of 
JavaScript applications and the need for more effective code organization.

As a result, developers have started using some of the design patterns 
that have been successfully used in the back end over the past decade in 
the interface. These include the Model-View-Controller (MVC) design 
pattern and some of its derived versions, such as Model-View-ViewModel 
(MVVM) and Model-View-Presenter (MVP).

Developers around the world have started sharing some SPA frame-
works that somehow try to implement the MVC design pattern, but don’t 
necessarily Strongly follow the MVC pattern. Most of these frameworks 
implement Models and Views, but since not all of them implement con-
trollers, we call this family of frameworks MV*.

MVC (MODEL VIEW CONTROLLER)
The MVC pattern (Model-View-Controller or Model-State-Behavior) 
describes a simple way to build an application structure that aims to sepa-
rate business logic from the user interface. As a result, the application is 
easier to scale, test, maintain, and of course implement.



156    ◾    TypeScript for Beginners

MVC is an architecture with three layers:

•	 Models: Manage the data of an application. The models will be anemic 
(they will lack functionalities) since they will be referred to the services.

•	 Views: A visual representation of the models.

•	 Controllers: Links between services and views.

Model

The model in MVC provides the data. As a rule, this is a very simple POJO 
(Plain Old JavaScript Object – good old Java object), which has certain prop-
erties. As an example of a model, consider the following TypeScript class:

interface IModel {
   DisplayName: string;
   Id: number; 
}
class Model implements IModel {
   DisplayName: string;
   Id: number; 
  constructor(model : IModel) {
 this.DisplayName = model.DisplayName;
 this.Id = model.Id;
} 
 }
let firstModel = new Model({Id: 1, DisplayName: 
’firstModel’});

Here, we have defined an interface called IModel, which has the properties 
Id and DisplayName, and a class that implements this interface. We have 
provided a simple constructor to set these properties. The last line of this 
fragment creates an instance of this class with the desired properties. As 
you can see from this snippet, the Model class is a very simple POJO that 
contains some data.

View

The view in MVC provides a visual representation of the model. In web 
frameworks, this will usually be a snippet of HTML code:

<div id="viewTemplate">
      <span> {Id} </span>
     <span><h1> {DisplayName} </h1></span>
 </div>



TypeScript Architecture    ◾    157

There is a div tag here that contains two span tags. The contents of the first 
span tag are highlighted in bold and will display the Id property from the 
model. The content of the second span tag is the h1 header and displays 
the DisplayName property from the model. By separating the elements of 
the user interface view from the model, we can see that we can change the 
view as we like, even without using the model code. We can apply styles to 
each element using CSS, or even completely hide certain properties in the 
view. This separation gives us the ability to design or modify a part of the 
display regardless of the model.

This design work can even be transferred to a completely separate and 
independent team with specialized skills in the field of user interface 
design. As long as the underlying model doesn’t change, both parts of the 
model and view will work together seamlessly.

Let’s look at the following example:

class View {
       template: string; 
      constructor(_template: string) {
   this.template = _template;
    }
       render(model: Model) {
     // Combining the template and the view;
    }
}

Here, we have defined a View class that has a single template property. 
When we create this view, we give it an HTML template that it should use. 
This View class also has a render method with a single model argument. 
The render method will combine the template and the model and return 
the final HTML code.

Controller

The controller in the MVC framework does the job of coordinating the 
interaction between the model and the view. The controller usually per-
forms the following steps:

•	 Creates an instance of the model

•	 Creates an instance of the view

•	 Passes an instance of the model to the view



158    ◾    TypeScript for Beginners

•	 Asks the view to visualize itself (generate the actual HTML code 
based on the values in the model)

•	 Attaches the resulting HTML code to the DOM tree

The controller in MVC is also responsible for the application logic. This 
means that it can control which views are presented, when and what to do 
when certain events occur.

As an example of what a controller might look like, let’s look at the fol-
lowing code:

class Controller {
    model: Model; 
    view : View;
    constructor() {
        this.model = new Model({Id : 1, DisplayName : 
'firstModel'});
        this.view = new View($('#viewTemplate') 
.html()); 
    } 
    render() { 
        $('#domElement').html(this.view.render 
(this.model));
     }
  }

Here we have defined the Controller class, which has the model and view 
properties. Then our constructor function creates an instance of the 
Model class with certain properties and an instance of the View class. An 
instance of the View class is created using a template that is read from 
the viewTemplate DOM element. The Controller class also defines the 
render function, which sets the actual HTML code of the DOM element 
DOMElement. This HTML code is the result of calling the render func-
tion for the View class and passing the model for rendering.1

Let’s see how the process itself goes:

1	 The image is taken from https://habr.com/en/post/151219/.

https://habr.com


TypeScript Architecture    ◾    159

1.	When a user visits a web resource, the initialization script creates an 
instance of the application and runs it for execution.

2.	The index action of the front controller is executed, which generates 
a view of the main page.

3.	The view is displayed to the user.
The first three steps are a simple chain, without using a model. 

Next is the sequence where the model is involved:

4.	After the application receives a request from the user, an instance of 
the requested controller is created and the specified action is called.

5.	This action calls the methods of the model that modify it.

6.	The view is generated (or the view is notified when the model is 
updated).

7.	The view requests data to be displayed.

8.	The model returns the requested data.

9.	The view displays the results to the user.

MVC FRAMEWORKS
One of the most important moments in the history of TypeScript develop-
ment was when it was announced that the Microsoft and Google teams 
were working together on Angular 2. Angular 2 was a long-awaited 
update to the popular Angular framework. But unfortunately, this update 
required a new set of language features to make the Angular 2 syntax 
cleaner and clearer. Google originally proposed a new language called 
AtScript to simplify these new language features, which were also closely 
related to the ECMAScript 6 and 7 offerings.

After some time of collaboration, it was announced that all the neces-
sary features of the AtScript language would be included in TypeScript 
and that Angular 2 would be written in TypeScript. This meant that the 
vendors of the new language features (TypeScript and Microsoft) and the 
consumers of the new language features (Angular 2 and Google) were able 
to agree on the requirements and the near future of the language. From 
this cooperation, it can be understood that the TypeScript language has 
been thoroughly studied by a well-known JavaScript development team 



160    ◾    TypeScript for Beginners

and has come a long way. However, Angular 2 was not the first framework 
to adopt the TypeScript language. Many third-party JavaScript libraries 
also offer full TypeScript support.

Using the MVC framework provides a number of advantages like:

•	 Separation of the various elements used to display information to 
the user

•	 Increased flexibility and reuse

•	 A single model can have several different views that can be used at 
different times

•	 User interface development activities can be undertaken by a team 
of specialists

•	 Changes to the model data can trigger events in a completely differ-
ent controller, and each component does not know about the other

•	 Views can contain other views in a nested way, thereby improving 
reuse

•	 Changes in the behavior of a component can be made without 
changing its visual representation (by changing the controller, not 
the representation)

•	 Fast and parallel development

•	 Testability of individual components

BACKBONE
We will start our research on TypeScript frameworks by creating an 
application in Backbone. While it can be argued that Backbone is not 
a TypeScript framework, we have already seen how it can be used with 
TypeScript syntax. Backbone is also one of the oldest frameworks. It’s 
small, light, and extremely fast. Backbone, however, requires writing a 
little more code, compared to most frameworks, since it is actually the 
groundwork of the MVC framework.

When working with Backbone, you will need to call the visualization 
functions yourself, as well as manually attach the rendered HTML code 
to the DOM tree. To make development on Backbone a little easier, the 
Marionette framework was developed on top of Backbone, to simplify and 



TypeScript Architecture    ◾    161

remove most of the code that is being used. In fact, there are a number of 
frameworks that use Backbone as the main framework and add additional 
concepts that are useful when creating web applications. Marionette is 
also extremely fast, as it adds only a thin layer of functionality on top of 
Backbone, while still using the basic Backbone library.

Backbone.js is a JavaScript library. It uses a RESTful JSON interface. 
It is based on the Model-View-Presenter (MVP) application design pat-
tern. This library is designed for developing single-page web applications. 
It helps to keep various parts of web applications in sync.

Setting up the environment for Backbone is quite simple and can be 
done via tsc and npm as follows. Initialize the TypeScript environment 
with tsc:

tsc-init

Initialize npm and install Backbone, Bootstrap, JBone, and the declara-
tion files for Backbone using the @types:

npm syntax init
npm install backbone
npm install bootstrap
npm install jbone
npm install @types/backbone

JBone is a jQuery implementation built specifically for Backbone. It 
includes all the jQuery functionality that Backbone requires, and is sig-
nificantly lighter and faster than the full jQuery library.

AURELIA
Aurelia was one of the first SPA frameworks to offer full TypeScript inte-
gration. It is a framework that uses the capabilities of ECMAScript 6 to 
improve the development experience. One of the most striking features of 
Aurelia is the small amount of code you need to write to get things done.

Aurelia understands that if you are writing a standard class, you will 
probably want to use the class properties to render the HTML code. Of 
all the frameworks that we will discuss, Aurelia is the easiest to use and 
the most intuitive. There are no hidden bugs or special workarounds. This 
framework has gone to great lengths to simplify the TypeScript develop-
ment process.



162    ◾    TypeScript for Beginners

The easiest way to set up a development environment is to use the 
Aurelia command-line interface aurelia-cli, which can be installed as 
follows:

npm install aurelia-cli -g

After installation, you can call it to create a new project:

au new

You will be asked a simple set of questions, starting with the name of the 
base catalog you would like to use. The next question is whether to use 
ESNext or TypeScript as the development language, and the last question 
is whether or not to load all the project dependencies. Select TypeScript 
and then Yes to load the dependencies. It will take a few minutes to set up 
the default project structure. After that, a new directory will be created 
based on the project name you selected at the beginning of the process.

The aurelia-cli program has several options. To compile your project, 
enter:

au build

To launch the Aurelia app, enter:

au run

This is followed by the compilation and binding steps, and then configur-
ing the http server to serve the default application on port 9000.

ANGULAR
Angular is an open-source framework for creating frontend web applica-
tions. It is aimed at solving several problems that a developer faces when 
building single-page applications. This framework simplifies applica-
tion development and testing. It implements the Model-View-Controller 
(MVC) and Model-View-View-Model (MVVM) approaches.

Since its release, its ecosystem has gone beyond imagination. Now it is 
deservedly called the most used JS framework for developing SPA (Single-
Page-Applications), and it boasts the largest developer community.

Angular 2 comes with a large list of features that will allow you to 
develop everything from web to desktop and mobile applications. The 



TypeScript Architecture    ◾    163

framework is built on typescript from Microsoft with an eye to making 
JavaScript code more flexible and attractive for large enterprises.

Angular 2 is a completely rewritten Angular 1 framework that used 
TypeScript as the preferred language. The naming convention adopted 
by the Angular team states that Angular 1 is now called AngularJS, and 
Angular versions 2 and higher are called Angular. Since the release of 
Angular 2, the Angular team has released a number of major updates, 
and the current version of Angular at the time of writing this chapter 
is Angular 7. The examples in this book are written using Angular 7, so 
wherever you see the word Angular, remember that it refers to Angular 
version 7. In this section, we will look at how the Model-View-Controller 
design pattern is used in Angular.

Similar to configuring the development environment in Aurelia, 
Angular also has a tool for configuring the project using the command 
line called “Angular Command Line Interface.” It can be installed using 
npm by the following way:

npm install -g @angular/cli

Once the command-line interface is installed globally, we can configure 
the Angular development environment using the command-line interface:

ng new my-app

The Angular command line interface is designated as ng, and here we have 
specified that it should create a new project in a new directory named my-
app. In the new directory, the command-line interface will download and 
install all the necessary components of the Angular application, as well 
as create a minimal project instance in the src/app directory to get you 
started. To start the development web server and see how this application 
works, type the following command:

npm start

The start command will compile all the source code of the application and 
launch the web server on port 4200.

Along with compiling the application and automatically starting the 
web server, the npm start command will also look at the source files in 
the project directory and automatically recompile the application after 



164    ◾    TypeScript for Beginners

changing the files. It will also give the web browser a signal to restart the 
app. The built-in monitoring, recompilation, and reloading capabilities are 
very helpful in web application development, providing quick feedback 
when the source code changes. Keep an eye on the console where you are 
running npm start. It shows all TypeScript compilation errors that occur 
when saving your files.

REACT
Despite the fact that React is more of a library than a framework, it stands 
behind the user interface of Facebook and Instagram, showing its effec-
tiveness inside dynamic applications with high traffic (bandwidth).

It is rightfully considered the fastest growing JS framework: today there 
are about 1000 GitHub authors. In the MVC (Model-View-Controller) React 
model.js acts as a “V” and can be easily integrated into any architecture. 
Thanks to the use of a virtual DOM tree, it provides a greater performance 
boost compared to Angular 1.x. In addition, React components can be cre-
ated and reused in other applications, or even transferred for public use.

Although React is more difficult to learn, it makes application develop-
ment simple and easy to understand. In addition, it can be ideally suited 
for complex, impressive software solutions with a high degree of load.

It uses a specific built-in syntax to combine HTML templates and 
JavaScript code into a single file called JSX. It doesn’t have downloadable 
string templates, like in Backbone, or HTML code snippets that are in a 
separate file, like in Angular or Aurelia. In React, all templates are mixed 
with regular JavaScript code, using an HTML-like syntax. As a simple 
example of this syntax, let’s look at the following code:

render() {
   return <div>Hello <span>React</span></div>; 
}

Here, we have the standard TypeScript render function. As part of this 
function, we return what looks like native HTML code with <div>tags and 
child <span>tags. Note that there are no quotation marks around these 
HTML elements. They are written inside our function without a clear sep-
aration from the regular TypeScript code.

TypeScript included support for the unique React/JSX syntax in 
release  1.6. However, to use the new JSX syntax, we will need to create 



TypeScript Architecture    ◾    165

TypeScript files with the extension .tsx instead of the usual extension. ts. 
When TypeScript finds files with the extension. tsx, it parses the file as a 
JSX file, which allows you to use the JSX syntax.

The process that React uses to generate JavaScript from JSX files is an 
additional step in the normal development workflow. Our TypeScript files 
.tsx, after compilation, will generate JavaScript files that convert the JSX 
syntax into a series of calls to React libraries.

For example, using the <div> element in .tsx file will create a call to 
React.createElement (“div”,…) in the compiled JavaScript file. These com-
piled files must then be combined with the React libraries themselves to 
create executable code. For this reason, it is recommended to use a tool 
such as Webpack to combine the output of the compilation step with the 
React libraries. Webpack will also create a single output file to load into 
the browser in a process called bundling.

To start a new React project, we will follow a few steps. First, create a 
directory for your project and initialize npm:

mkdir react-sample
cd react-sample
npm init

Here, we create a directory for our project, go to it, and initialize npm 
in the project directory. After that, the package file will be created.json, 
which can use npm. After initialization, we can install webpack:

npm install -g webpack
npm install -g webpack-cli

The webpack will be installed as a global Node module and the web-
pack command-line interface, webpack-cli, will be installed. Note that, 
although we have webpack installed globally, the webpack command-line 
tool should still find webpack modules in the node_modules directory. 
This means that we also need to install webpack as a local module.

npm install webpack –save-dev
npm install webpack-cli -save-dev

Now we can install React:

npm install react react-dom



166    ◾    TypeScript for Beginners

After that, the react and react-dom libraries will be installed in the node_
modules directory. We will need a number of other utilities, namely:

npm install –save-dev ts-loader source-map-loader

After that, the ts-loader and source-map-loader utilities will be installed as 
development dependencies. We will also need to install Boostrap as we did 
in our previous projects:

npm install bootstrap

After installing Bootstrap, we can install react ad files using the @types 
syntax:

npm install @types/react --save-dev
npm install @types/react-dom --save-de

Webpack Configuration

As indicated earlier, webpack is used to combine TypeScript output with 
React libraries and create a single unified JavaScript file that can be used 
in the browser. To do this, however, use the compilation options for 
TypeScript in the tsconfig file.json and webpack configuration in the web-
pack.config file.the js must be consistent. The easiest way to do this cor-
rectly is to use one of the convenient configuration tools available online. 
One of these tools can be found on the page https://webpack.jakoblind.
no. It provides a simple HTML page for configuring a number of options 
available for webpack.

In this chapter, we took a detailed look at what an MVC framework is, 
and discussed each of its elements. We have covered the roles and respon-
sibilities of the model, view, and controller in MVC, and how they interact 
with each other when creating user interfaces. We also briefly discussed 
the benefits of using MVC frameworks. We then explored four MVC 
frameworks that are either very tightly integrated with TypeScript or writ-
ten with TypeScript in mind. We also discussed the factors that affect per-
formance when working with each of these frameworks.

TEST-DRIVEN DEVELOPMENT
In this chapter, we will look at test-driven development in relation to 
TypeScript. We will discuss some of the most popular testing frameworks, 

https://webpack.jakoblind.no
https://webpack.jakoblind.no


TypeScript Architecture    ◾    167

write some unit tests using these frameworks, and then discuss the librar-
ies for unit testing and methods for continuous integration.

Test-driven development is a way to reflect on our code, which should 
be part of the standard development process. It is a development para-
digm that starts with tests and drives the driving force of production code 
through these tests. Test-driven development is like asking a question: 
How do I know I’ve solved a problem? This is an important idea to under-
stand. We are writing code to solve the problem, but we must be able to 
prove that we have solved the problem with the help of automated tests.

The main stages of this approach are

•	 Writing a test that doesn’t pass

•	 Running a test to make sure it doesn’t pass

•	 Writing code to pass the test

•	 Running a test to make sure it passes

•	 Running all the tests to see that the new code doesn’t break the other 
one

•	 Repetition

Using test-driven development is really a way of thinking. Some develop-
ers follow this approach and write tests first, while others write their own 
code first, and then tests. Then, there are those who do not write tests at 
all. If you fall into the latter category, then I hope that the methods you 
will learn in this chapter will help you start working in the right direction.

There are so many excuses not to write unit tests. For example, there was 
no question of a testing framework, or because of this, the development 
time will increase by 20%, or the tests are outdated, so we don’t run them 
anymore. The truth is that these days we can’t afford not to write tests. 
Applications grow in size and become more complex, and the require-
ments change over time. An application with a good set of tests can be 
changed much faster, and it will be much more resistant to future changes 
in requirements than an application that does not have tests. That is, when 
the real savings in unit testing costs become apparent. By writing unit 
tests for your application, you check its future and ensure that any change 
in the code base does not break the existing functionality. We also want to 



168    ◾    TypeScript for Beginners

write our own applications, so that they stand the test of time. The code we 
are currently writing can be in a production environment for years, which 
means that sometimes you will have to make improvements or fix bugs in 
code that was written many years ago. If the application has a complete 
set of tests surrounding it, then changes can be made with confidence that 
these changes will not violate the existing functionality.

Test-driven development in the JavaScript space also adds another layer 
to our code coverage. Quite often, development teams write tests designed 
only for the application logic on the server side.

For example, in the Visual Studio space, these tests are often written 
only with a focus on the MVC framework, which consists of controllers, 
views, and basic business logic. It has always been quite difficult to test the 
application logic on the client side, in other words, the actual rendered 
HTML code and user interactions.

Frameworks for testing JavaScript code provide us with tools to 
address this gap. Now we can start modularizing our visualized HTML 
code, as well as modeling user interactions, such as filling out forms 
and clicking a button. This additional layer of testing, combined with 
server – side testing, means that we have a way to unit test every layer of 
our application-from server-side business logic to server-side page ren-
dering, all the way down to user interaction. This ability to perform unit 
testing of user interactions with the client side of the interface is one of 
the most powerful aspects of any MV*JavaScript framework. In fact, it 
may even affect the architectural decisions you make when choosing a 
technology stack.

MODULE, INTEGRATION, AND ACCEPTANCE TESTINGS
Automated testing can be divided into three main areas, or types of test-
ing: module testing, integration testing, and acceptance testing. You can 
also describe these testing as testing from the “black box” or from the 
“white box.” White-box testings are those in which the internal logic or 
structure of the code under testing is known to the tester. Black-box test-
ings, on the other hand, are those in which the internal design and/or logic 
is unknown to the tester.

Module Testings

A module testing is usually a white-box testing in which all the external 
interfaces of a code block are mocked or muted. If we are testing some 



TypeScript Architecture    ◾    169

code that, for example, performs an asynchronous call to load a JSON 
block, module testing of this code will require locking the returned JSON. 
This method ensures that the object under testing is always given a known 
set of data. When new requirements arise, this well-known data set can 
grow and expand, of course. The objects under testing should be designed 
to interact with interfaces, so that these interfaces can be easily mocked or 
silenced in a module testing scenario.

Integration Testings

Integration testings are another form of white-box testings that allow the 
object under testing to run in an environment close to real-world code. In 
our previous example, when some code executes an asynchronous call to 
load a JSON block, the integration testing actually needs to call the REST 
services that generate the JSON. If this REST service relies on data from 
the database, then the integration testing will require data in the data-
base that matches the integration testing scenario. If we were to describe 
a module testing as having a boundary around the object under testing, 
then an integration testing is simply an extension of that boundary to 
include dependent objects or services.

Creating automated integration testings for your applications will 
significantly improve the quality of your product. Consider the case of 
the scenario we used when a block of code calls the REST service for 
data in JSON format. Someone can easily change the structure of this 
data returned by the REST service. Our unit testings will still pass, as 
they don’t actually call the REST code on the server side, but our appli-
cation will be messed up because the returned JSON doesn’t meet our 
expectations.

Without integration testings, these types of errors will only be detected 
at later stages of manual testing. By thinking about integration testings, 
by implementing specific data sets for integration testings and embedding 
them in your own set, you can quickly eliminate such errors.

Acceptance Testings

Acceptance testings are black-box testings and are generally scenario-
based. They can include multiple custom screens or custom interactions 
to pass through. These tests are also commonly performed by the test 
team, as they may require logging in to the application, searching for a 
specific dataset, updating data, and so on. Using planning and the many 



170    ◾    TypeScript for Beginners

tools available, we can also automate these acceptance tests so that they 
run as part of an automated test suite. The more acceptance tests a project 
has, the more reliable it will be. Note that in the test-driven development 
methodology, each error detected by the manual testing team should lead 
to the creation of new unit, integration, or acceptance tests. This meth-
odology will help ensure that once an error is found and fixed, it will not 
appear again.

REFACTORING
Refactoring is a systematic procedure for improving code without creat-
ing new functionality. Refactoring turns mess into clean code and simple 
design.

As trivial as it may sound, refactoring in a large project is a compli-
cated thing, especially if the tests in the project are not written for every 
function or are written in such a way that they do not cover the entire 
code base or not all use cases. Even by slightly changing the behavior of 
a function, you always run the risk of returning something from it or 
passing (forgetting to pass) something wrong to it. This case is more in 
the piggy bank of tests, but still with TypeScript you can be sure that the 
function returns the type that you specified and accepts exactly what you 
specified.

TYPESCRIPT 4.2 RELEASE
Microsoft has released TypeScript 4.2. This is the most recent update at 
the time of writing this book. In the quarterly update of the language, it is 
now possible to set the abstract modifier to the constructor signature and 
mark the variable as unused when the array is destructured. Tuple types 
now allow rest arguments at any position, and type aliases are no longer 
expanded when a hint is displayed.

SUPPORT FOR REST ELEMENTS IN THE FIRST AND 
INTERMEDIATE PARAMETERS OF TUPLES OF TYPES
The tuple syntax in TypeScript supports rest elements that are prefixed 
with […] and can contain any number of parameters of the same type. 
Previously, rest parameters were put in the last position, so it was impos-
sible to express tuple types that end with a fixed set of elements. Such tuple 
types are useful for strongly typed functions with lists of variable param-
eters that end with a fixed set of parameters.



TypeScript Architecture    ◾    171

Tuple types now allow rest parameters at any position, not just the last 
one. For example:

type T1 = [...string [], number]; / / Zero or more 
strings followed by a number;
type T2 = [number, ...boolean [], string, string]; / / 
A number followed by zero or more boolean values 
followed by two strings.

Now there is only one restriction for rest elements – they cannot go after 
other rest elements and before optional elements.

SAVING-TYPE ALIASES
Type aliases are now saved for more correct display of the hint in the IDE 
and type output in the .d.ts definition files. It also tracks type aliases for 
instances of other aliases. This makes the representation of composite 
types readable (including in the definition file. d.ts).

THE ABSTRACT MODIFIER IN CONSTRUCTOR SIGNATURES
TypeScript allows you to mark a class as abstract – in this case, it is only 
used to extend it with a subclass, and object instances are created only for 
a specific implementation class. But in TypeScript of previous versions, 
there were problems when creating mix-ins that use abstract classes.

TypeScript 4.2 allows you to specify an abstract modifier for construc-
tor signatures. Adding an abstract modifier to the constructor signature 
signals that an abstract class can be passed to it. This does not prevent you 
from passing other classes and constructor functions that are “specific” 
to it.

Mix-in factories will now support abstract classes.

abstract class Shape {
   abstract getArea(): number;
 }  
// Error! You cannot create an instance of an abstract 
class.
  new Shape();
 interface HasArea {
  getArea(): number;
  }



172    ◾    TypeScript for Beginners

  // Error! You cannot assign an abstract constructor 
type to a non-abstract constructor type.
 let Ctor: new () => HasArea = Shape;
 // Works!
 let Ctor: abstract new () => HasArea = Shape; 

Strict Checks for the In Statement

In JavaScript, using a non-object type on the right side of the in statement 
is a runtime error. The syntax check in TypeScript 4.2 ensures that this 
error can be detected during development.

"foo" in 42
/ / Error! The right side of the in expression must 
not be a primitive.

UNUSED VARIABLES DURING ARRAY DESTRUCTURIZATION
Now, when destructuring an array, you can explicitly mark variables as 
unused by adding an underscore to them.

let [_first, second] = getValues();

Previously, when the noUnusedLocals option was enabled, this syntax gave 
an error: “Variable declared, but not read.” Now, for array variables that 
have an underscore prefix, the error will not be returned.

TYPE ARGUMENTS
Type arguments are not allowed in JavaScript, but in TypeScript 4.2, the 
parser will parse them in a specification-compliant way. When writing the 
following code in a JavaScript file:

f < T > (100) 

TypeScript will parse it as:

 (f < T) > (100)

This is important if you have used the TypeScript API to analyze type 
constructs in JavaScript files.

In addition, there is a new noPropertyAccessFromIndexSignature option. 
This function disables the ability to use a point to access those object prop-
erties that are defined using the string index signature.



TypeScript Architecture    ◾    173

If there is a function inside the Boolean expressions with && and || 
without calling it, this will result in a compilation error under the – strict-
NullChecks flag.

In the newest version of TypeScript, they also added support for the - 
explainFiles flag. You can use it to understand why the file was included in 
the compilation process.

Future Plans

The next quarterly version of TypeScript 4.3 was released on May 25. 
The iteration plan lists upcoming language features, editor performance 
improvements, performance improvements, infrastructure improve-
ments, and more.

In addition, according to the TypeScript roadmap, Microsoft plans to:

•	 Allow any key type as an index signature parameter

•	 Add keywords –noImplicitOverride and override

•	 Add a static index signature

•	 Use unknown as the type for the catch clause variables

•	 Allow more code before super () calls in subclasses

•	 Allow typeof to follow the class expression

Remember that in 2020, Microsoft revealed the source code of the 
TypeScript library for editing documents in the cloud.



https://taylorandfrancis.com


175DOI: 10.1201/9781003203728-6

C h a p t e r  6

Appraisal

TypeScript is both a language and a set of tools for generating JavaScript 
code. It was developed by Anders Heilsberg at Microsoft Corporation to 
help developers write enterprise-wide JavaScript code. This book begins 
with an introduction to the TypeScript language, and gradually moves 
from basic concepts to advanced and powerful features of the language, 
including asynchronous programming methods, decorators, and gener-
alizations. Many modern JavaScript and TypeScript frameworks are also 
considered in parallel. Some of the well-known object-oriented methods 
and design patterns are described, and their real-world implementations 
are presented. Using this book, you can create a comprehensive, end-to-
end web application that shows you how to combine TypeScript features, 
design patterns, and best development practices in a real-world scenario.

TypeScript is a very powerful tool that allows you to significantly 
improve the readability and security of your code. In this book, we have 
looked at TypeScript both inside and out. In the first chapter of this book, 
we compared JavaScript with TypeScript and noted the strengths of 
TypeScript. TypeScript is statistically typed and this makes it easier to use. 
In addition to this, statistical typing has such a feature as auto-completion 
in code editors, which makes the process of writing code easier, because 
you do not need to constantly look through the documentation and search 
for the name of the method you need. After that, we moved on to the part 
where we analyzed how ECMAScript works with TypeScript. TypeScript 
is a compiled superset of JavaScript, bringing optional static typing and 
some of the features of modern ECMAScript standards. The TypeScript 

https://doi.org/10.1201/9781003203728-6


176    ◾    TypeScript for Beginners

compiler has a parameter that can switch between different versions of 
the ECMAScript standard and currently TypeScript supports ES3, ES5, 
and ES6.

Also, in parallel, a lot of modern JavaScript and TypeScript frame-
works are considered – for each of them, module and integration testing 
is described in detail. Some of the well-known object-oriented methods 
and design patterns are described, and their real-world implementations 
are presented.

TypeScript brings many benefits to developer productivity and devel-
oper experience. TypeScript is not unique to Angular, other powerful fron-
tend frameworks such as React are beginning to be used with TypeScript 
to allow development teams to build robust, resilient, and scalable applica-
tions. JavaScript and TypeScript are constantly evolving but do not com-
pete with each other. TypeScript was created to complement and improve 
JavaScript, not to replace it. In the future, they may become very similar in 
their functions, but TypeScript will remain a statically typed alternative.

If you’re new to JavaScript, you shouldn’t grin at the first mention of 
TypeScript. TypeScript was developed not just to encourage backend 
developers to work with the frontend, but to build on lessons learned from 
other languages to provide everyone with a tool that allows you to create 
reliable code.

JavaScript was created to be portable and simple – but over time, we 
have seen that the language goes beyond its original intent. Although a 
few hundred, if not thousands of lines of code, could still be supported in 
regular JavaScript – we all know that this is no longer the case. JavaScript 
code works everywhere and on almost every device. The number of rows 
is growing exponentially, and we need a way to mentally digest and main-
tain it.

It is not difficult to learn TypeScript itself. It is written and runs like 
JavaScript – with only a few tools and techniques to help you improve the 
code. In fact, you can just write TypeScript code like JavaScript, and it will 
still compile. While TypeScript may seem like syntactic sugar, it makes 
our experience of maintaining and writing code much more optimal.

I hope that by the end of this book, you will be able to create a com-
prehensive, end-to-end web application that shows you how to combine 
TypeScript features, design patterns, and best practices in a real-world 
scenario.



177

Appendix

TYPESCRIPT CHEAT SHEET
Types

String let customerName: string= “John Doe”;
Number let price: number = 19.95;
Boolean let shipped: boolean = false;
Date let orderDate: Date = new Date(2017, 2, 9);
Any let something: any = “Can be anything”;
Enum enum Color {Red, Green, Blue};
Array let cards: string[] = [‘Visa’, ‘MasterCard’];
Null let orderId: number = null;
Tuple let stateTaxRates: [string, number];
Void function log(msg: string): void {

  console.log(msg);
}

Const const lives: number = 99;

Usage

Installing TypeScript npm npm install -g typescript
Compiling TypeScript tsc somefile.ts
TypeScript Docs TypeScriptLang.org
Type Definition Files DefinatelyTyped.org

Scope/Modifiers

Public (default) public firstName: string;
Protected protected inventory: number;
Private private outOfStock: boolean;
Read Only readonly pi: number = 3.14159;
Static static log(msg: string) { console.log(msg) };



178    ◾    Appendix

Classes
class OrderLogic {
   constructor(public order: IOrder) {  }

   getOrderTotal(): number {
       let sum: number = 0;

       for (let orderDetail of this.order.
orderDetails)
      {
           sum += orderDetail.price;
      }
      return sum;
  }
}

Abstract Classes
abstract class Person {
  name: string;
  monthlySalary: number;
  monthlyBenefits: number;

  abstract calcSalary(): number;
}

Interfaces
interface IOrderDetail {
  productName: string;
  quantity: number;
  price: number;
  orderDate: Date;
  shipped: boolean;
  //Optional
  outOfStock?: boolean;
  //Method
  calcTax: (taxRate: number) => number;
}

Inheritance and Implementing Interfaces
interface IGPS {
  getLocation() number;
}



Appendix    ◾    179

interface ISelfDrive extends IGPS {
  drive(latitude: number, longitude: number, 
elevation: number): void;
}

class Vehicle {
  make: string;
  model: string;
  year: number;
}

class FlyingCar extends Vehicle implements ISelfDrive 
{
  hasGps: boolean;

  drive(latitude: number, longitude: number, 
elevation: number) {
}

  getLocation(): number {
  }
}

Optional Parameters
class Util {
  log(msg: string, logDate?: Date) {
    if (logDate)
     console.log(logDate + ’ ’ + msg);
    else
     console.log(new Date() + ’ ’ + msg);
  }
}

Rest Parameters
class Order {
  addOrderDetails(…orderDetails: IOrderDetail[]) {
  }
}

Namespaces
namespace AcmeCorp.Logging {
  export class Logger {



180    ◾    Appendix

       static log(msg: string): void {
       console.log(msg);
       };
  }
}

/// <reference path="AcmeCorp.Logging.ts" />

//Alias
import logger = AcmeCorp.Logging.Logger;

namespace AcmeCorp.OnlineStore {
  class OrderLogic {
    calcOrder(): number {
        logger.log("calculating order");
        return 0;
    }
  }
}

Triple Slash Directives

Reference built-in types /// <reference lib=“es2016.array.include” />
/// <reference path=“../my_types” />

Reference other types /// <reference types=“jquery” />
AMD /// <amd-module name=“Name” />

/// <amd-dependency path=“app/foo” name=“foo” />

Compiler Comments

Don’t check this file // @ts-nochec
Check this file // @ts-check
Igonre the next line // @ts-ignore
Expect an error on the next line // @ts-expect-error



181

Index

A

Abstract classes, 60–61, 178
Abstract modifier in constructor 

signatures, 171–172
Acceptance testings, 169–170
Access modifiers, 51 

accessors (getters/setters), 58–59 
parameter properties, 58 
private modifier, 52–53 
protected modifier, 53–54 
public by default, 51–52 
readonly modifier, 55 
static properties, 59–60 
type iterator modifier, 55–57

Accessors (getters/setters), 58–59
addClickListener, 78, 79
addVar variable, 68
Ad merge, 142
AlbumClass, 145
AMD, 105
Angular, 162–164
Angular 2, 159, 162–163
Angular Command Line Interface, 163
AngularJS, 163
Animal class, 66
Anonymous functions, 68–69
any type, 15–16
App 

compiling, 140–141 
making, 154–155

Application architecture, 151 
abstract modifier in constructor 

signatures, 171 
in statement, strict checks for, 172 

acceptance testings, 169–170 
Angular, 162–164 
Aurelia, 161–162 
Backbone, 160–161 
compilation, 155 
creating an application in TS,  

153–154 
integration testings, 169 
making an app, 154–155 
Model-View-Controller (MVC) 

frameworks, 159–160 
Model-View-Controller (MVC) 

pattern, 155 
controller, 157–159 
model, 156 
view, 156–157 

module testings, 168–169 
multi-page application (MPA),  

152–153 
MV* architecture, 155 
need for, 151–152 
React, 164 

webpack configuration, 166 
refactoring, 170 
rest elements, support for, 170–171 
saving-type aliases, 171 
single-page application (SPA), 152 
test-driven development, 166–168 
tuple syntax in TS, 170–171 
type arguments, 172 

future plans, 173 
TypeScript 4.2 release, 170 
unused variables during array 

destructurization, 172



182    ◾    Index

Array<T> type, 37
Array destructurization, unused variables 

during, 172
Array type, 10
AtScript language, 159
Aurelia, 161–162
aurelia-cli program, 162
Automatic type inference, 84

B

Backbone, 160–161
BaseClass, 50
baseUrl, 121
Best general type, 66–67
Black-box testings, 168
Block scope viewability, closure of 

variables with, 25–26
Block viewport, 22–23
Boolean, 9
Boolean values, 11, 80, 97
Browser-based JS, 128
Bundle, 138

C

C#, 2
Callback functions, this parameters for, 

78–79
cardPicker(), 76
Cheat sheet, TS, 177–180 

abstract classes, 178 
classes, 178 
compiler comments, 180 
inheritance and implementing 

interfaces, 178–179 
interfaces, 178 
namespaces, 179–180 
optional parameters, 179 
rest parameters, 179 
scope/modifiers, 177 
triple slash directives, 180 
types, 177 
usage, 177

Choosing TS, 2–4
Classes, 47, 178 

abstract classes, 60–61 

access modifiers, 51 
accessors (getters/setters), 58–59 
parameter properties, 58 
private modifier, 52–53 
protected modifier, 53–54 
public by default, 51–52 
readonly modifier, 55 
static properties, 59–60 
type iterator modifier, 55–57 

constructors, 61 
using a class as an interface,  

63–64 
inheritance, 48 

class inheritance, 50–51 
interface inheritance, 49–50

classicstrategy, 118
Class inheritance, 50–51
Class types in generalizations, 90 

new keyword, 91
closedDoor variable, 14
Coding, 3
CommonJS, 105
Compiler, 19–20, 180
Compiling an app, 140–141
Constant declarations, 26–27
Constant enums, 93–95
Constructor function, 62
Constructors, 61 

using a class as an interface, 63–64
Constructor signatures, abstract modifier 

in, 171 
strict checks for the in statement,  

172
Context type, 67–68
Contextual typing, 66
createCardPicker function, 76, 78
createSquare, 36

D

Declare enums, 95–96
Declaring functions, 29
Default values, 28–29
Delphi, 2
Deno, 128 

compiler API, 137–139 
debugging, 136–137 



Index    ◾    183

installation of, 130 
Deno.core, 134 
Deno modules, 133–134 
Deno standard modules, 134 
Deno X, 134 
internal part, 131–132 
lock file, 135 
package manager, 134–135 
preset config by default, 133 
safety, 132–133 
WASM, RUST, plugins, 136 
web standards, 135 
in Windows, 130–131 

integration testing, 137 
main features of, 129 

module system, 129 
safety, 129 

testing, 137
DerivedFromBaseClass, 50
Destructuring, 27–28
dev_server, 138–139
Discriminated union types, 33 

extra properties, checks for,  
38–40 

functional types, 40–41 
indexed types, 41–43 
interfaces, working with, 35 
optional properties, 36–37 
read-only properties, 37–38

DisplayName property, 157
doAnimalsHaveMuscles function, 145
DoorState enumeration, 13–14

E

ECMAScript, 175–176 
ECMAScript 3 standard, 1 
ECMAScript 5 standard, 5 
ECMAScript 6 standard, 76 
ECMAScript 2015 standard, 27, 96

Ellipsis, 73
Employee subclass method, 54
Enums, 13–15, 92 

constant enums, 93–95 
declare enums, 95–96

ESNext, 162
explainFiles flag, 173

Export, 101 
default export, 103–105 
reexport, 102–103 
validation, 102

Export default, 112–113
Exporting multiple objects, 113
Extending interfaces, 32
External modules, 110 

abbreviated external module 
declaration entry, 111 

module declarations using wildcard 
characters, 111

Extra properties, checks for, 38–40

F

firstName parameter, 71, 72
Functional types, 40–41
Functions, 18, 64 

overloads, 80–82 
type compatibility, 69 

optional parameters and default 
parameters, 70–73 

rest parameters, 73 
“this” and arrow functions, 75–77 
this keyword, 74–75 
this parameters, 77–78 
this parameters for callback 

functions, 78–79 
types of 

adding types to a function, 64–65 
anonymous functions, 68–69 
best general type, 66–67 
context type, 67–68 
inferring types, 65–66

G

Generalizations, limitations of, 88–90
Generalized classes, 88
Generalized types, 86–87
Generalized type variables, working with, 

84–86
GenericIdentityFn, 87
GenericNumber type, 88
Generics, 83 

exploring the world of, 83–84 



184    ◾    Index

generalizations, limitations of, 88 
using generic parameters in 

generalization constraints, 
89–90 

generalized classes, 88 
generalized types, 86–87 
generalized type variables, working 

with, 84–86 
using class types in generalizations, 90 

new keyword, 91
GitHub, 130, 139
Go language, 134
Google, 159
Greeter class, 48, 62
greeterMaker, 63

H

Handler class, 79
Hejlsberg, Anders, 1, 175
History of TS, 1–2
Horse class, 49

I

IBase, 50
IDE, see Integrated development 

environment
IDerivedFromBase interface, 50, 51
IFirstInterface interface, 51
Import, 103 

default export, 103–105 
importing a module for the sake of 

“side effects”, 103 
importing a single exported item, 103 
importing the entire module into a 

single variable, 103
Imported names, explicitly defining, 113
Indexed types, 32, 41–43
Inferring types, 65–66
Inheritance, 48 

class, 50–51 
and implementing interfaces, 178–179 
interface, 49–50

Installation of TS 
via NPM, 139–140 
as a visual studio plugin, 140

In statement, strict checks for, 172
Integrated development environment 

(IDE), 4, 43 
node-based compilation, 43 

tsconfig.json file, creating, 44–45
Integration testings, 169
Interface implementation, 32–33
Interface inheritance, 49–50
InterfaceInheritanceClass class, 50
Interfaces, 30, 178 

extending interfaces, 32 
indexed types, 32 
interface implementation, 32–33 
merging, 142–144 
working with, 35

ISecondInterface, 51
isEligible function, 4
Isomorphic modules, 112

J

JavaScript (JS), 1, 5, 80, 82, 110, 166, 168, 
175–176 

and TypeScript (TS), 3–4
JS, see JavaScript
JSDoc, 5

K

keepWholeObject function, 29

L

LabelledValue interface, 35
Language service, 8
lastName parameter, 71, 72
.length function, 85
Let keyword, 19
Loading modules, 115–117
loggingIdentity type, 85

M

Merging declarations, 142 
basic concepts, 142 
interfaces, merging, 142–144 
namespaces, merging, 144–145 



Index    ◾    185

with classes, 145–146 
prohibited merges, 146–149

Microsoft Corporation, 175
Model-View-Controller (MVC) 

frameworks, 155, 159–160, 162 
controller, 157–159 
model, 156 
view, 156–157

Model-View-Presenter (MVP), 155
Model-View-View-Model (MVVM) 

approaches, 155, 162
Module, 100 

export, 101 
export validation, 102 
reexport, 102–103 

external modules, 110 
abbreviated external module 

declaration entry, 111 
module declarations using wildcard 

characters, 111 
generating code for, 105–108 
import, 103 

default export, 103–105 
importing a module for the sake of 

“side effects”, 103 
importing a single exported item, 

103 
importing the entire module into a 

single variable, 103 
optional module loading, 108–110 
working with other JavaScript 

libraries, 110
Module declaration 

abbreviated external module 
declaration entry, 111 

using wildcard characters, 111
Module resolution, tracking, 124–125
Module resolution strategies, 118 

classic, 118–119 
node, 119

Module resolution system, additional flags 
of, 120–121

Modules, structuring, 112 
explicitly defining the imported 

names, 113 
exporting as close to the top level as 

possible, 112 

exporting multiple objects, 113 
exporting only one class or one 

function, 112–113 
importing a large number of items, 

113–114 
loading modules, 115–117 
module resolution, 117 
namespaces in modules, 114 
path mapping, 121 

tracking module resolution, 
124–125 

virtual directories with rootDirs, 
123–124 

trace, 126 
relative and nonrelative module 

imports, 117–118 
additional flags of the module 

resolution system, 120–121 
base URL, 121 
module resolution strategies, 

118–119 
Node.js, 119–120 

risk indicators, 114
Module system, 129
Module testings, 168–169
MouseEvent parameter, 67
MPA, see Multi-page application
Multi-page application (MPA), 152–153
MultipleInterfaces, 51
Multiple objects, exporting, 113
MV* architecture, 155
MVC frameworks, see Model-View-

Controller frameworks
MVP, see Model-View-Presenter
MVVM approaches, see Model-View-

View-Model approaches

N

Namespace, 99–100, 179–180 
import template, 113–114 
merging, 144–145 

with classes, 145–146 
in modules, 114

Netscape, 5
Never type, 17–18
Node.js, 119–120, 128



186    ◾    Index

Node-based compilation, 43 
tsconfig.json file, creating, 44–45

Node variant, 43
noPropertyAccessFromIndexSignature 

option, 172
noUnusedLocals option, 172
NPM, installation of TS via, 139–140
Null and Undefined types, 17
Number, 9

O

Octopus class, 58
onClickBad function, 79
onClickGood function, 79
openDoor variable, 14
OpenSource, 2
Optional module loading and its other 

advanced scenarios, 108–110
Optional parameters, 179
Optional properties, 36–37
Optional tuple elements, 12
optionTuple property, 12

P

Parameter properties, 58
Path mapping, 121 

module resolution, tracking, 124–125 
rootDirs, virtual directories with, 

123–124 
trace, 126

Person class, 54
pickCard function, 81, 82
Predefined characters, 97–98
Private modifier, 52–53
Prohibited merges, 146–149
Protected modifier, 53–54

R

React, 164 
webpack configuration, 166

ReadonlyArray, 38
ReadonlyArray<T> type, 37
Readonly modifier, 55
Read-only properties, 37–38

Re-declaring and escaping, 23–25
Reexport, 102–103
Refactoring, 170
Relative and nonrelative module imports, 

117–118 
base URL, 121 
module resolution strategies, 118 

classic, 118–119 
node, 119 

module resolution system, additional 
flags of, 120–121 

Node.js resolving modules, 119–120
Renaming properties, 28
Rest elements, support for, 170–171
Rest parameters, 73, 179
REST service, 169
Risk indicators, 114
rootDirs, virtual directories with, 123–124
Runtime, 127 

compiling an app, 140–141 
Deno, 128 

compiler API, 137–139 
debugging, 136–137 
installation of, 130–136 
integration testing, 137 
main features of, 129 
testing, 137 

installation of TS via NPM, 139–140 
installing TS as a visual studio plugin, 

140 
merging declarations, 142 

basic concepts, 142 
interfaces, merging, 142–144 
namespaces, merging, 144–146 
prohibited merges, 146–149 

Node.js, 127–128 
static typing, 128

Runtime error, 172
Rust backend, 132
Rusty V8, 131–132

S

Saving-type aliases, 171
Scoping, 21–22
SearchFunc interface, 41
Server-side JS, 128



Index    ◾    187

Single-page application (SPA), 152
someFunc function, 95
SPA, see Single-page application
SquareConfig definition, 40
SquareConfig objects, 39
squareOptions, 39
Static properties, 59–60
Static typing, 128
Strengths, of TS, 5–6
strict-NullChecks flag, 173
String, 9–10
stringArray interface, 42
String enums, 15
Structure of TS, 7 

basic TS compiler, 8 
constant declarations, 26–27 
declaring functions, 29 
default values, 28–29 
destructuring, 27–28 
discriminated union types, 33 

checks for extra properties,  
38–40 

functional types, 40–41 
indexed types, 41–43 
optional properties, 36–37 
read-only properties, 37–38 
working with interfaces, 35 

interfaces, 30 
extending interfaces, 32 
indexed types, 32 
interface implementation,  

32–33 
language service, 8 
object-oriented programming, 7 
renaming properties, 28 
tool integration, 8 
tsc, 8 
TS compiler, 19–20 
type assertions, 18 

let keyword, 19 
type check, providing, 7 
types of TS, 8 

any type, 15–16 
array type, 10 
Boolean, 9 
enum, 13–15 
never type, 17–18 

Null and Undefined types, 17 
number, 9 
optional tuple elements, 12 
string, 9–10 
string enums, 15 
Symbol type, 18 
tuple, 10–11 
tuples deconstruction, 11–12 
void, 16 

variable declarations, 20–21 
block scope viewability, closure of 

variables with, 25–26 
block viewport, 22–23 
re-declaring and escaping, 23–25 
scoping, 21–22

sumMatrix function, 22, 24
Symbols, 96 

predefined characters, 97–98
Symbol type, 18
Syntactic sugar, 6–7
SystemJS, 111

T

Test-driven development, 166–168
“this” and arrow functions, 75–77
this keyword, 74–75
this parameters, 77–78 

for callback functions, 78–79
Tokio, 132
Tool integration, 8
Triple slash directives, 180
tsc, 8
tsconfig.json file, creating, 44–45
TS layer, 131
Tuple, 10–11
Tuples deconstruction, 11–12
Tuple syntax in TS, 170–171
Type arguments, 172 

future plans, 173
Type assertions, 18 

let keyword, 19
Type check, providing, 7
Type compatibility, 69 

optional parameters and default 
parameters, 70–73 

rest parameters, 73 



188    ◾    Index

“this” and arrow functions, 75–77 
this keyword, 74–75 
this parameters, 77–78 

for callback functions, 78–79
Type iterator modifier, 55–57
TypeScript 4.2, 170, 171
Types of TS, 8 

any type, 15–16 
array type, 10 
Boolean, 9 
enum, 13–15 
never type, 17–18 
Null and Undefined types, 17 
number, 9 
optional tuple elements, 12 
string, 9–10 
string enums, 15 
Symbol type, 18 
tuple, 10–11 
tuples deconstruction, 11–12 
void, 16

U

UMD modules, 111
Union type, 10–11
Unused variables during array 

destructurization, 172

V

V8 platforms, 131–132
Variable declarations, 20–21 

block scope viewability, closure of 
variables with, 25–26 

block viewport, 22–23 
re-declaring and escaping, 23–25 
scoping, 21–22

Virtual directories with rootDirs,  
123–124

Visual Studio, 43
Visual Studio Code, 137
Visual studio plugin, installing  

TS as, 140
Void, 16

W

Watch mode, 155
White-box testings, 168
Wildcard characters, module declarations 

using, 111
Windows, installation of Deno in, 

130–131
Windows variant, 43


	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Acknowledgments
	About the Author
	CHAPTER 1: TypeScript: Introduction to TypeScript
	WHAT IS TS?
	A BRIEF HISTORY OF TS
	WHY SHOULD YOU CHOOSE TS?
	How Does TS Help Developers Code Easier?
	How Exactly Does TS Improve JS?

	TS AS COMPARED TO JS
	What Is JS?
	TS Strengths
	Syntactic Sugar

	TS STRUCTURE
	Basic TS Types
	Boolean
	Number
	String
	Array
	Tuple
	Tuples Deconstruction
	Optional Tuple Elements
	Enum
	String Enums
	Any
	Void
	Null and Undefined
	Never
	Symbol

	Type Assertions
	The Let Keyword

	TS Compiler
	Variable Declarations
	var Declarations
	Scoping
	Block Viewport
	Re-declaring and Escaping
	Closure of Variables with Block Scope Viewability

	Constant Declarations
	Let or Const?

	Destructuring
	Destructuring an Object

	Renaming Properties
	Default Values
	Declaring Functions
	Interfaces
	Extending Interfaces
	Indexed Types
	Interface Implementation

	Discriminated Union Types
	Working with Interfaces
	Optional Properties
	Read-Only Properties
	Checks for Extra Properties
	Functional Types
	Indexed Types


	INTEGRATED DEVELOPMENT ENVIRONMENTS
	Node-Based Compilation
	Creating a tsconfig.json File


	CHAPTER 2: Key Concepts of TS
	CLASSES
	Inheritance
	Interface Inheritance
	Class Inheritance

	Access Modifiers
	Public by Default
	Private Modifier
	Protected Modifier
	Readonly Modifier
	Type Iterator Modifier
	Parameter Properties
	Accessors (Getters/Setters)
	Static Properties

	Abstract Classes
	Constructors
	Using a Class as an Interface


	FUNCTIONS
	Types of Functions
	Adding Types to a Function
	Inferring Types
	Best General Type
	Context Type
	Anonymous Functions

	Type Compatibility
	Optional Parameters and Default Parameters
	Rest Parameters

	this Keyword
	Keyword “this” and Arrow Functions
	this Parameters
	this Parameters for Callback Functions

	Overloads

	GENERICS
	Exploring the World of Generics
	Working with Generalized Type Variables
	Generalized Types
	Generalized Classes
	Limitations of Generalizations
	Using Generic Parameters in Generalization Constraints

	Using Class Types in Generalizations
	new Keyword


	ENUMS
	Constant Enums
	Declare Enums


	SYMBOLS
	Predefined Characters


	CHAPTER 3: Modules and Namespaces
	WHAT IS NAMESPACE?
	WHAT IS MODULE?
	Export
	Export Validation
	Reexport

	Import
	Importing a Single Exported Item
	Importing the Entire Module into a Single Variable, and Using It to Access the Exported Module Elements
	Importing a Module for the Sake of “Side Effects”
	Default Export

	Generating Code for Modules
	Optional Module Loading and Its Other Advanced Scenarios
	Working with Other JavaScript Libraries

	EXTERNAL MODULES
	Abbreviated External Module Declaration Entry
	Module Declarations Using Wildcard Characters

	UMD MODULES
	STRUCTURING MODULES
	Export as Close to the Top Level as Possible
	If You Export Only One Class or One Function, Use Export Default
	If You Are Exporting Multiple Objects, Put Them on the Top Level
	Explicitly Define the Imported Names
	Use the Namespace Import Template When Importing a Large Number of Items
	Do Not Use Namespaces in Modules
	Risk Indicators
	Loading Modules
	Module Resolution
	Relative and Nonrelative Module Imports
	Module Resolution Strategies
	How Does Node.js Resolve Modules?
	Additional Flags of the Module Resolution System
	Base URL

	Path Mapping
	Virtual Directories with rootDirs
	Tracking Module Resolution
	What to Look for in the Trace?



	CHAPTER 4: TS Runtime
	WHAT IS RUNTIME?
	NODE.JS
	WHY TYPESCRIPT IS HERE TOO?
	Why Node.js?

	WHAT IS DENO?
	Main Features of Deno
	Safety
	Module System

	Installation of Deno
	Installation in Windows
	Internal Part
	Safety
	Strict: True by Default
	Deno Modules
	Deno.core
	Deno Standard Modules
	Deno X
	Package Manager
	Lock File
	Web Standards
	WASM, RUST, Plugins

	Debugging
	Testing
	Integration Testing
	Compiler API
	dev_server


	INSTALLING AND COMPILING THE TS
	Installation via NPM
	Installing as a Visual Studio Plugin
	Compiling an App

	MERGING DECLARATIONS
	Basic Concepts
	Merging Interfaces
	Merging Namespaces
	Merging Namespaces with Classes, Functions, and Enumerations
	Merging Namespaces with Classes

	Prohibited Merges


	CHAPTER 5: TypeScript Architecture
	WHAT IS AN APPLICATION ARCHITECTURE?
	WHY DO WE NEED ARCHITECTURE?
	SINGLE-PAGE APPLICATION
	MULTI-PAGE ARCHITECTURE
	CREATING AN APPLICATION IN TYPESCRIPT
	MAKING AN APP
	COMPILATION: WATCH MODE
	MV* ARCHITECTURE
	MVC (MODEL VIEW CONTROLLER)
	Model
	View
	Controller

	MVC FRAMEWORKS
	BACKBONE
	AURELIA
	ANGULAR
	REACT
	Webpack Configuration

	TEST-DRIVEN DEVELOPMENT
	MODULE, INTEGRATION, AND ACCEPTANCE TESTINGS
	Module Testings
	Integration Testings
	Acceptance Testings

	REFACTORING
	TYPESCRIPT 4.2 RELEASE
	SUPPORT FOR REST ELEMENTS IN THE FIRST AND INTERMEDIATE PARAMETERS OF TUPLES OF TYPES
	SAVING-TYPE ALIASES
	THE ABSTRACT MODIFIER IN CONSTRUCTOR SIGNATURES
	Strict Checks for the In Statement

	UNUSED VARIABLES DURING ARRAY DESTRUCTURIZATION
	TYPE ARGUMENTS
	Future Plans


	CHAPTER 6: Appraisal
	APPENDIX
	INDEX



